bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\(f\)为\(\overline{f}\),我们从数据中学到的\(f\)为\(f^{*}\),实际上\(f^{*}\)是\(\overline{f}\)的一个估计.在统计中,变量\(x\)的均值\(mean\)表示为\(\mu\),方差\(variance\)表示为\(\sigma\),假设我们抽取出…
结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测,在点$x_0$处的Excepted prediction error: $EPE(x_0)=E\left[\left(y_0-\hat{f}(x_0)\right)^2|x_0\right]\\ \ \ =E\left[\left(y_0-E(y_0)\right)^2|x_0\right]+\l…
对预测模型讨论,预测误差(error)分两类:偏差(bias)造成的误差与方差(variance)造成的误差.最小化偏差与方差的一个权衡.理解这两类误差有利于诊断模型结果和避免过拟合和欠拟合. 偏差与方差 三种方式定义偏差与方差:概念.图形.数学 概念定义: 偏差造成的误差:预期/平均预测值 和 尝试正确预测的值之差.预期/平均预测值作何理解?多次建模,新数据新分析建立模型,由于数据随机,预测会产生一系列预测.偏见度量模型预测(models' predictions) 远离 正确值(the co…
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 原文在这里: https://www.cnblogs.com/ooon/p/5711516.html 博主大概翻译自英文: http://scott.fortmann-roe.com/docs/BiasVaria…
参考:https://codesachin.wordpress.com/2015/08/05/on-the-biasvariance-tradeoff-in-machine-learning/ 之前一直没搞明白什么是bias,什么是variance,现在看看这篇博文. 当你的模型太简单,也就是你的train error太大的时候,你的bias就会比较大:当你的模型变得复杂时,bias变小,同时模型变得比较senstive,variance就会变大 但bias变化的幅度更大,所有整体看来,cros…
线性回归中有欠拟合与过拟合,例如下图: 则会形成欠拟合, 则会形成过拟合. 尽管五次多项式会精确的预测训练集中的样本点,但在预测训练集中没有的数据,则不能很好的预测,也就是说有较大的泛化误差,上面的右边与左边的图都有很大的泛化误差,他们的情况各不相同,如果数据是非线性的,我们无法使用线性模型来精确的预测,即它的偏差很大,引起欠拟合.而如果像上面右图那样形成一个五次多项式的模型,很可能是我们的训练集数据很小的情况下建立的,它就不能反映出x与y更广泛的关系,这种模型有很大的偏差,引起过拟合.所以归根…
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性. 举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3.具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环:二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打…
偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右上角的图片,意思就是目标为红点,虽然还在周围,没有太偏,但是太过分散了,不够集中,这就有很高的方差 第一行就是低偏差的结果,第二行就是高偏差的结果 第一列就是低方差的结果,第二列就是低方差的结果 我们可以将问题本身理解成红心,我们拟合的模型就是上面的点 那么就可以知道模型的误差等于偏差加上方差加上不…
偏差,方差以及两者权衡 偏差是由模型简化的假设,使目标函数更容易学习. 一般来说,参数化算法有很高的偏差,使它们学习起来更快,更容易理解,但通常不那么灵活.反过来,它们在复杂问题上的预测性能更低,无法满足算法偏差的简化假设. Decision trees是低偏差算法的一个例子,而linear regression则是高偏差算法的一个例子. 如果使用不同的训练数据,则目标函数的估计值会发生变化.通过机器学习算法对训练数据估计目标函数,所以我们希望算法有一定的方差,而不是零方差. K-Nearest…
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(development set):利用验证集或者又称为简单交叉验证集(hold-out cross validation set)进行交叉验证,选择出最好的模型: 测试集(test set):最后利用测试集对模型进行测试,获取模型运行的无偏估计. 小数据时代 在小数据量的时代,如:100.1000.1…