早就听过用字典树求异或最大值,然而没做过.发现一碰到异或的题就GG,而且因为以前做过的一道类似的题(事实上并不类似)限制了思路,蠢啊= =. 题意:一棵带权的树,求任意两点间路径异或的最大值. 题解:设xor(a,b)是求a,b间路径的异或值,那么xor(a,b)=xor(root,a)^xor(root,b).因为如果LCA(a,b)==root时结论显然成立,不然的话就会有重复走过的部分,但是异或有性质x^x=0,所以LCA(a,b)!=root结论依然成立. 这样题目就很简单了.对每一个x…