HDU 6069 Counting Divisors (素数+筛法)】的更多相关文章

题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7. 析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选,n = p1^c1*p2^c2*....*pn^cn,那么 d(n) = (c1+1) * (c2+1) * ...*(cn+1). d(n^k) =  (kc1+1) * (kc2+1) * ...*(kcn+1),这样的话,我们只要求出每个数的素因子的个数就好,直接算还是不行,只能先把1-sqrt(n)之…
题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K 然后现在就变成了求每个数的每个质因子有多少个,但是比赛的时候只想到sqrt(n)的分解方法,总复杂度爆炸,就一直没过去,然后赛后看官方题解感觉好妙啊! 通过类似素数筛法的方式,把L - R的质因子给分解,就可以在O(nlogn)的时间之内把所以的数给筛出来. 代码: /** @xigua */ #i…
Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Problem Description In mathematics, the function d(n) denotes the number of divisors of positive integer n. For example, d(12)=6 because 1,2,3,4,…
Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 1604    Accepted Submission(s): 592 Problem Description In mathematics, the function d(n) denotes the number of divisors of p…
Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 3170    Accepted Submission(s): 1184 Problem Description In mathematics, the function d(n) denotes the number of divisors of…
Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 2599    Accepted Submission(s): 959 Problem Description In mathematics, the function d(n) denotes the number of divisors of p…
题目链接 Problem Description In mathematics, the function d(n) denotes the number of divisors of positive integer n. For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors. In this problem, given l,r and k, your task is to calculate the followin…
http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{m}}^{pm}$,那么n的因子数就是 n的k次方也是一样的,也就是p前面乘个k就可以了. 先打个1e6范围的素数表,然后枚举每个素数,在[ l , r ]寻找该素数的倍数,将其分解质因数. 到最后如果一个数没有变成1,那就说明这个数是大于1e6的质数.(它就只有0和1两种选择) #include<…
比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p​m​^c​m​​​​,则d(n^k)=(k*c1+1)(k*c2+1)...(k*cm+1)d(n​k​​)=(kc​1​​+1)(kc​2​​+1)...(kc​m​​+1).然后由于l,r的值很大,但是l-r的范围还是可以接受的,所以我们用一个偏移数组 来存l<=n<=r数的d(n).然后就…
Output For each test case, print a single line containing an integer, denoting the answer.   Sample Input 3 1 5 1 1 10 2 1 100 3   Sample Output 10 48 2302     题意:就是那个公式 感觉还是题解讲的清楚 #include<iostream> #include<cstdio> #include<cstdlib> #i…