卷积神经网络之VGG网络模型学习】的更多相关文章

VGG:VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION 牛津大学 visual geometry group(VGG)Karen Simonyan 和Andrew Zisserman 于14年发表的论文.论文地址:https://arxiv.org/pdf/1409.1556.pdf.与alex的文章虽然都采用层和每层之间用pooling层分开,最后三层FC层(Fully Connected全连接层).但是Al…
ImageNet Classification with Deep Convolutional Neural Networks 论文理解  在ImageNet LSVRC-2010上首次使用大型深度卷积神经网络,并获得很好的成果. 数据集:ILSVRC使用ImageNet的一个子集,1000个类别每个类别大约1000张图像.总计,大约120万训练图像,50000张验证图像和15万测试图像. 网络架构:5个卷积层和3个全连接层另外还有无权重的池化层. 激活函数使用了ReLU非线性函数,大大加快了训…
Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.pdf Abstract 更深层次的神经网络训练更加困难.我们提出一个 Residual的学习框架来缓解训练的网比之前所使用的网络深得多.我们提供全面的经验证据显示这些残余网络更容易优化,并可以从显着增加的深度获得准确性.在ImageNet数据集上我们评估深度达152层残留网比VGG网[41]更深,但…
在我之前的文章中,我讨论了如何对卷积神经网络(CNN)学习的权重进行拓扑数据分析,以便深入了解正在学习的内容以及如何学习它. 这项工作的重要性可归纳如下: 它使我们能够了解神经网络如何执行分类任务. 它允许我们观察网络的学习方式 它允许我们看到深层网络中的各个层如何在它们检测到的内容上有所不同 在这篇文章中,我们展示了如何将这种理解用于实际目的.那些是: 如何使用持久同源性的条形码长度来推断CNN的准确性. 我们的研究结果如何从一个数据集推广到下一个数据集. 使用持久同源条形码方法如何定量测量数…
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的).论文下载 Very Deep Convolutional Networks for Large-Scale Image Recognition.论文主要针对卷积神经网络的深度对大规模图像集识别精度的影响,主要贡献是使用很小的卷积核(\…
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
1.卷积神经网络中卷积的核心意义是什么?每一组卷集核 权重是一个抽特征的滤波器, 从卷集核的角度抽取特征 2.卷积神经网络很好的特性参数共享机制每一个神经元固定一组a x b x c(图像的通道数) 的参数w ,因此每一层网络的参数是 a x b x c x depth(神经元个数):a x b 代表卷集核比如(3 x 3):相比全连接的DNN 参数 w x h x c x depth 降低很多:例如:4 x 4 x 3 x 10(CNN)  418 x 418 x 3 x 10(DNN) 3.…
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如…
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”.下面基于与MNIST数据集非常类似的另一个数据集Fashion-MNIST数据集来构建一个卷积神经网络. 0. Fashion-MNIST数据集 MNIST数据集在机器学习算法中被广泛使用,下面这句话能概况其重要性和地位: In fact, MNIST is often the first data…
讲授卷积神经网络核心思想.卷积层.池化层.全连接层.网络的训练.反向传播算法.随机梯度下降法.AdaGrad算法.RMSProp算法.AdaDelta算法.Adam算法.迁移学习和fine tune等. 大纲: 卷积神经网络简介 视觉神经网络的核心思想 卷积神经网络的核心思想 卷积运算 卷积层的原理 多通道卷积 池化层的原理 全连接层 卷积网络结构 训练算法简介 卷积层的反向传播 池化层的反向传播 全连接层的反向传播 完整的反向传播算法 随机梯度下降法 参数值初始化 学习率的设定 梯度下降法的改…