SVM之问题形式化】的更多相关文章

>>>SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 SVM内容繁多,打算用五篇文章来记述.SVM之问题形式化描述给出SVM的问题描述与基本模型:SVM之对偶问题将SVM求解转换为对偶问题的求解:SVM之核函数描述了SVM引人核函数进行特征向高维映射的过程:SVM之解决线性不可分描述了SVM对线性不可分数据的处理方法:另外,写在SVM之前——凸优化与对偶问题本身与SVM无关,但涉及了SVM优化问题求解的基础,是SVM之对偶…
SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到.考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇.所以,本文也不会涉及优化问题的许多深层问题,只是个人知识范围内所了解的SVM中涉及到的优化问题基础. 一.凸优化问题 在优化问题中,凸优化问题由于具有优良的性质(局部最优解即是全局最优解),受到广泛研究. 对于一个含约束的优化问题: \[\left\…
SVM之问题形式化 SVM之对偶问题 SVM之核函数 >>>SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之核函数介绍了通过计算样本核函数,实际上将样本映射到高维空间以望使其线性可分的方法,一定程度上解决了线性不可分问题,但并不彻底. 现在,换个思路,对于线性不可分问题不再千方百计的变换数据使其线性可分,对于有些数据,找到合适的变换可能是相当困难的.我们允许数据线性不可分,允许得到的分类器对一些样本而言不“完美”,但分类器得为自己的不“完美”付出代价,它要受到惩…
SVM之问题形式化 >>>SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 前一篇SVM之问题形式化中将最大间隔分类器形式化为以下优化问题: \[\begin{align}\left\{ \begin{matrix} \underset{w,b}{\mathop{\min }}\,\frac{1}{2}{{\left\| w \right\|}^{2}}  \\ \begin{matrix}s.t. & {{y}^{i}}({{w}^{…
SVM之问题形式化 SVM之对偶问题 >>>SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之对偶问题中讨论到,SVM最终形式化为以下优化问题\[\begin{align}\left\{ \begin{matrix}\underset{\alpha }{\mathop{\max }}\,\sum\limits_{i}{{{\alpha }_{i}}}-\frac{1}{2}\sum\limits_{i,j}{{{\alpha }_{i}}{{\al…
在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开. 实际上,一个线性函数是一个实值函数,而我们的分类问题需要离散的输出值,例如用1表示某个样本属于类别,而用0表示不属于(不属于也就意味着属于),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别…
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得…
背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机器学习技法课程上有很详细的讲授SVM的原理,所以机会难得,一定要好好把握这次机会,将SVM背后的原理梳理清楚并记录下来.这篇文章总结第一讲linear hard SVM的相关内容.     最好的分割线 之前有讲过PLA,即在线性可分的数据中,找到一条线,能够区分开正负样本,如下所示: 上面三条线,…
(写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手机或iPad登陆网站就可以看到自己的一些笔记,才更有助于知识的巩固.借此机会,重新整理各大算法,希望自己能有更深的认识,如果有可能,也大言不惭的说希望能够帮助到需要帮助的朋友-) (本篇博客内容来自台大林轩田老师Coursera Machine Learning Technology视频及周志华老师…
第一步.初步了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向量机本身便是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中. 支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的. 通俗来…