用turtle库显示汉诺塔问题的过程】的更多相关文章

用turtle库显示汉诺塔问题的过程 一.什么是汉诺塔问题? 一座汉诺塔,塔内有3个座A.B.C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示.把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3个座上的盘子始终保持大盘在下,小盘在上.在移动过程中可以利用B座来放盘子.‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪ ‪‬‪‬‪‬‪‬‪…
汉诺塔问题 问题描述和背景: 汉诺塔是学习"递归"的经典入门案例,该案例来源于真实故事.‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬在世界某个地方有个很虔诚的宗教组织,其中僧侣维护者一项神圣任务:保持宇宙的时间(好伟大啊....).在时间的最开始(那时候有僧侣吗?),僧侣在平台上竖立了三个垂直杆,在最左侧杆上有64个不同半径金色同心圆盘,直…
import turtleturtle.screensize(800,800) class Stack: def __init__(self): self.items = [] def isEmpty(self): def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): if not self.isEmpty(): ] def size(self):…
python运用turtle 画出汉诺塔搬运过程 1.打开 IDLE 点击File-New File 新建立一个py文件 2.向py文件中输入如下代码 import turtle class Stack: #面向对象,定义一个类 def __init__(self): self.items = [] def isEmpty(self): return len(self.items) == 0 def push(self, item): self.items.append(item) def po…
代码如下: (此代码最多可支持七层) import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.items) == 0 def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): if not self.isEmpty(…
一.汉诺塔问题 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘 二.汉诺塔问题分析 我们可以将问题简化描述为:n个盘子和3根柱子:A(源).B(备用).C(目的),盘子的大小不同且中间有一孔,可以将盘子“串”在柱子上,每个盘子只能放在比它大的盘子上面.起初,所有…
1.汉诺塔 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 2.算法介绍 当盘子的个数为n时,移动的次数应等于2^n – 1 后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了.首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序…
学习Python已经有一段时间了,也学习了递归的方法,而能够实践该方法的当然就是汉诺塔问题了,但是这次我们不只是要完成对汉诺塔过程的计算,还要通过turtle库来体现汉诺塔中每一层移动的过程. 一.设计一个类(Class) 类(Class):用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例. 下面是此程序需用到的类(Class)代码: class Stack: def __init__(self): self.items = [] def is…
多柱汉诺塔可以用Frame–Stewart算法来解决. The Frame–Stewart algorithm, giving a presumably optimal solution for four (or even more) pegs, is described below: Let be the number of disks. Let be the number of pegs. Define to be the minimum number of moves required t…
学过程序的人一定记得汉诺塔.我们学的第一个程序是HelloWorld,而碰到的第一个坑就是汉诺塔,短短十几行代码,不知花费了多少时间精力去理解.我记得当年的开发环境还是蓝屏的,汉诺塔程序的输出还是一行行枯燥无趣的字符串.现在重写了这个程序,以三维可视化的方式看下汉诺塔的运行过程. void hanoi(char src, char mid, char dst, Yuint stacks, Ychar* pMoveSteps, Yuint& index) { ) { Ychar& value…