POJ 1830 开关问题(Gauss 消元)】的更多相关文章

http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2…
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> #include <cmath> #include <cstring> #include <cstdio> using namespace std; ],e[],g[][],n; int gauss() { int row,col; ,col=;row<n&&…
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状态. 第三行 N个0或者1的数,表示操作结束后N个开关的状态. 接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化.每组数据以 0 0 结束.  注意判断无解别把if放错位置 我的now表示当前该哪个方程组了,一开始是1确定一个变量就+1,答案应该是$2^{n-now+1}$才行…
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^代替,不难看出 B[i]=st[i]^ed[i] 如果X[j]=1,假设j会影响i,那么X[j]*A[i][j]这一项应为1,所以A[i][j]应=1 输入别反! 注意A[i][i]=1 将系数矩阵化为上三角形式后,剩下的系数全为0的行数就是自由元的个数: 如果某一行系数全为零,增广矩阵最后一列对应…
题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转换次数. 题目仅仅和操作次数的奇偶有关,所以用0.1表示之后,对于每一个开关的转换次数就已经知道了.所以仅仅有一个未知量.能够线性表示.练习使用模板 const int maxn = 40; int a[maxn][maxn]; int gauss(int N, int M) { int r, c,…
开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作…
Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5875   Accepted: 2825 Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and…
Gambler Bo Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1152    Accepted Submission(s): 471Special Judge Problem Description Gambler Bo is very proficient in a matrix game. You have a N×M m…
$Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\a_{31}x_1+a_{32}x_2+...+a_{3n}x_n=b_3\end{matrix}\right.$​ 好像也可以写成这样: $AX=B$ 其实就是小学学的加减消元…
求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(matrix){ let l=[];//是否为自由元 let ans=[];//存储解 const n=matrix.Column-1;//解的个数 const EPS=0.00001; let res=0,r=0; for(let i=0;i<matrix.Column;i++){ for(let j=…