目录 Abstract Introduction First of All Inception Depth Related Work Motivation and High Level Considerations 增加网络的深度和宽度会带来两个问题: 解决思路 不利因素 解决方法 Starting 注意 Architecture Details The Main Idea Inception GoogLeNet Training Methodology Abstract 该网络结构可以在增加网…
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)  摘要 本文提出了一个深层的卷积网络结构-Inception,该结构的主要特点是提高了网络内部计算资源的利用率.在预估计算资源消耗量不变的情况下增加网络的深度及宽度.为了进行有效的优化,结构决策基于Hebbian原理及多尺寸处理操作.本文思想的一个经典实现是GoogLeNet,网络的深度为22层,该网…
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包括depth和width两方面.在有足够的labeled training data 时这种方法是最简单以及稳妥的方法来获得一个高质量的模型.但是往往实际中大的网络会有更多的参数,当training data数量很少时,很容易出现overfitting,并且大的网络需要的计算资源也是更多.这是需要将…
论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Inception-v3 :Rethinking the Inception Architecture for Computer Vision Inception-v4 :Inception-Res…
论文地址 在该论文中作者提出了一种被称为Inception Network的深度卷积神经网络,它由若干个Inception modules堆叠而成.Inception的主要特点是它能提高网络中计算资源的利用率,这得益于网络结构的精心设计(基于 Hebbian principle 和 the intuition of multi-scale processing ),使得网络在增加宽度和深度的同时又能保持计算开销不变.作者在论文中还介绍了 Inception 的一个应用例子--GoogLenet,…
致网友:如果你不小心检索到了这篇文章,请不要看,因为很烂.写下来用于作为我的笔记. 2014年,在LSVRC14(large-Scale Visual Recognition Challenge)中,Google团队凭借 googLeNet 网络取得了 the new state of the art. 论文 Going deeper with convolutions 就是对应该网络发表的一篇论文: 主要内容: 主要围绕着一个 Inception architecture 怎么提出讲的: 不明…
目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二名,这两类模型结构的共同特点是层次更深了.VGG继承了LeNet以及AlexNet的一些框架结构,而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VG…
网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考. Going deeper with convolutions motivations: 提高模型性能的最直接方式:1.加深(增加层)2.加宽(增加单层的神经元个数) 带来的两个弊端:1.大规模的参数易导致过拟合且需要更多的训练集 2.更多的计算资源消耗 解决基本思想是在fc层甚至conv层使用稀疏连接结构,原因是1.生物中神经网络是稀疏的.2Aro…
Inception模块分为V1.V2.V3和V4. V1(GoogLeNet)的介绍 论文:Going deeper with convolutions 论文链接:https://arxiv.org/pdf/1409.4842v1.pdf 主要问题: 每张图中主体所占区域大小差别很大.由于主体信息位置的巨大差异,那选择合适的卷积核相对来说就比较困难.信息分布更全局性的图像适合选用较大的卷积核,信息分布较局部的图像适合较小的卷积核. 非常深的网络更容易过拟合.将梯度更新传输到整个网络是很困难的.…
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 conv,结构如下图所示,代表作GoogleNet 假设previous layer的大小为28*28*192,则, a的weights大小,1*…