import numpy as np import tensorflow as tf #build a graph print("build a graph") #生产变量tensor a=tf.constant([[1,2],[3,4]]) b=tf.constant([[1,1],[0,1]]) #获取tensor的数据类型和张量维度 print("a.dtype",a.dtype) print(a.get_shape()) print("type o…
1 官方文档 https://www.tensorflow.org/api_docs/ 2 极客学院中文文档 http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 3 TensorFlow基础笔记(2) minist分类学习…
数据材料 这是一个小型的人脸数据库,一共有40个人,每个人有10张照片作为样本数据.这些图片都是黑白照片,意味着这些图片都只有灰度0-255,没有rgb三通道.于是我们需要对这张大图片切分成一个个的小脸.整张图片大小是1190 × 942,一共有20 × 20张照片.那么每张照片的大小就是(1190 / 20)× (942 / 20)= 57 × 47 (大约,以为每张图片之间存在间距). 问题解决: 10类样本,利用CNN训练可以分类10类数据的神经网络,与手写字符识别类似 olivettif…
TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognition. http://www.cs.toronto.edu/~kriz/cifar.html Code in this directory demonstrates how to use TensorFlow to train and evaluate a convolutional neural…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
主要是四个文件 mnist_train.py #coding: utf-8 import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0.0001…
参考: http://blog.csdn.net/l18930738887/article/details/55000008 http://www.jianshu.com/p/19bb60b52dad http://blog.csdn.net/sinat_33761963/article/details/62433234 import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_la…
(1) 最简单的神经网络分类器 # encoding: UTF-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data as mnist_data print("Tensorflow version " + tf.__version__) print(tf.__path__) tf.set_random_seed(0) # 输入mnist数据 mnist = mnist_d…
#链接:http://www.jianshu.com/p/a70c1d931395 import tensorflow as tf import tensorflow.contrib.slim as slim # tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) # 除去name参数用以指定该操作的name,与方法有关的一共五个参数: # # input: # 指需要做卷积的输入图像,它…