首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
tensorflow 单机多GPU mnist实例
】的更多相关文章
tensorflow 单机多GPU mnist实例
http://blog.csdn.net/guotong1988/article/details/74748806 如何使用多GPU http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/using_gpu.html…
tensorflow 单机多GPU训练时间比单卡更慢/没有很大时间上提升
使用tensorflow model库里的cifar10 多gpu训练时,最后测试发现时间并没有减少,反而更慢 参考以下两个链接 https://github.com/keras-team/keras/issues/9204 https://medium.com/@c_61011/why-multi-gpu-training-is-not-faster-f439fe6dd6ec 原因可能是在cpu上进行参数梯度同步占每一步的很大比例 ‘’‘ It seems that CPU-side data…
Mac tensorflow mnist实例
Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上个人git完整代码地址:https://github.com/Liuyubao/Tensorflow_mnist sudo pip3 install tensorflow 开堂测试 下面是一些会涉及到的概念,可以参考谷歌机器学习术语表. 训练集 测试集 特征 损失函数 激活函数 准确率 偏差 梯度下…
『TensorFlow』分布式训练_其二_单机多GPU并行&GPU模式设定
建议比对『MXNet』第七弹_多GPU并行程序设计 一.tensorflow GPU设置 GPU指定占用 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7. GPU模式禁用 import os os.environ…
运行caffe自带的mnist实例教程
运行caffe自带的mnist实例教程 本文结合几篇博文总结下来的,附上其中一篇原博文链接以供参考:http://blog.sina.com.cn/s/blog_168effc7e0102xjr1.html 1.先进入caffe文件目录,(指令:cd ./caffe),再用data/mnist下的get_mnist.sh下載MNIST数据集,代码如下: sudo sh ./data/mnist/get_mnist.sh 打开下载目录caffe/data/mnist查看如下图: 2.转换格式,代码…
caffe mnist实例 --lenet_train_test.prototxt 网络配置详解
1.mnist实例 ##1.数据下载 获得mnist的数据包,在caffe根目录下执行./data/mnist/get_mnist.sh脚本. get_mnist.sh脚本先下载样本库并进行解压缩,得到四个文件. 2.生成LMDB 成功解压缩下载的样本库后,然后执行./examples/mnist/create_mnist.sh. create_mnist.sh脚本先利用caffe-master/build/examples/mnist/目录下的convert_mnist_data.bin工具…
ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试
http://www.cnblogs.com/denny402/p/5852983.html ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试 刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每…
Serverless助力AI计算:阿里云ACK Serverless/ECI发布GPU容器实例
ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI平台运维的负担,显著提升整体计算效率. AI计算离不开GPU已经是行业共识,然而从零开始搭建GPU集群环境是件相对复杂的任务,包括GPU规格购买.机器准备.驱动安装.容器环境安装等.GPU资源的serverless交付方式,充分的展现了serverless的核心优势,其向用户提供标准化而且“开箱即用…
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np params=np.random.normal(loc=0.0,scale=1.0,size=[10,10]) ids=[1,2,3] with tf.Session() as sess: print(s…
TensorFlow之多核GPU的并行运算
tensorflow多GPU并行计算 TensorFlow可以利用GPU加速深度学习模型的训练过程,在这里介绍一下利用多个GPU或者机器时,TensorFlow是如何进行多GPU并行计算的. 首先,TensorFlow并行计算分为:模型并行,数据并行.模型并行是指根据不同模型设计不同的并行方式,模型不同计算节点放在不同GPU或者机器上进行计算.数据并行是比较通用简便的实现大规模并行方式,同时使用多个硬件资源计算不同batch数据梯度,汇总梯度进行全局参数更新. 在这里我们主要介绍数据并行的多GP…