C语言 · 2的次幂表示 · 幂方分解】的更多相关文章

蓝桥杯练习场上有两个此类题目: 算法训练 幂方分解   时间限制:1.0s   内存限制:256.0MB        锦囊1 递归. 锦囊2 使用一个函数,递归的进行分解,每次分解的时候要将数字先转换成二进制.   问题描述 任何一个正整数都可以用2的幂次方表示.例如: 137=27+23+20  同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步:7= 22+2+20 (21用2表示) 3=2+20  所以最后137可表示为…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3087    Accepted Submission(s): 953 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
问题描述 任何一个正整数都可以用2的幂次方表示.例如: 137=27+23+20 同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步:7= 22+2+20 (21用2表示) 3=2+20 所以最后137可表示为: 2(2(2)+2+2(0))+2(2+2(0))+2(0) 又如: 1315=210 +28 +25 +2+1 所以1315最后可表示为: 2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0)…
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行)再想交的时候已经开始hack了 真是TMD.......,然后rejudge完了之后再HDOJ上瞬间AC,真是...狗了,只能是自己手残 手残,手残,手残(重要的事情说三遍) 思路 :(杭电官方题解,我就不班门弄斧了..QAQ) 考虑dpdp,用f_{t,x}f​t,x​​表示第tt秒在xx的概率,…
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b /= ; } return ans; } 快速幂取模运算 公式: 最终版算法: int PowerMod(int a, int b, int c) { ; a = a % c; ) { = = )ans = (ans * a) % c; b = b/; a = (a * a) % c; } retur…
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗? 通过简单地列出若干项 F 即可发现,某一项的值是由若干 a 和 b 相乘得到的,而他们的指数是连续的两项斐波那契数. 因此可以通过斐波那契数列的矩阵快速幂求法得到,注意需要指数的降幂公式. #include<stdio.h> #include<string.h> typedef…
问题描述 任何一个正整数都可以用2的幂次方表示.例如: =++ 同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: ()+()+() 进一步:= ++ (21用2表示) =+ 所以最后137可表示为: (()++())+(+())+() 又如: = + + ++ 所以1315最后可表示为: ((+())+)+((+()))+(()+())++() 输入格式 输入包含一个正整数N(N<=),为要求分解的整数. 输出格式 程序输出包含一行字符串,为符合约定的n的0,2表…
问题描述 任何一个正整数都可以用2的幂次方表示.例如: 137=27+23+20 同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步:7= 22+2+20 (21用2表示) 3=2+20 所以最后137可表示为: 2(2(2)+2+2(0))+2(2+2(0))+2(0) 又如: 1315=210 +28 +25 +2+1 所以1315最后可表示为: 2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0)…
读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用欧拉函数降一下幂,因为两个数一定互质因此不用再加一个phi(m),于是放心的乘吧宝贝!! #include <cstdlib> #include <cstring> #include <cstdio> #include <iostream> #include &…
#include<cstdio> #include<string> #include<iostream> #include<vector> #include<set> #include<map> #include<math.h> #include<queue> #include<stdlib.h> #include<cstring> #include<algorithm> u…