再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其性质 DFT和IDFT DFT的过程 IDFT的过程 FFT FFT的数学证明及时间复杂度分析 FFT的递归实现 FFT的非递归实现 FFT的局限性 例题 写在前面 为什么写这篇博客 笔者去年暑假刚刚学习过FFT,NTT的一些基础应用.但当时对FFT和NTT的理解还不够深入.本博客参考2016年国家…
再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT NTT的定义 从单位根到原根 常用NTT模数表 NTT的实现 写在前面 为了不使篇幅过长,预计将把学习笔记分为四部分: DFT,IDFT,FFT的定义,实现与证明:快速傅里叶变换(FFT)学习笔记(其一) NTT的实现与证明:快速傅里叶变换(FFT)学习笔记(其二) 任意模数NTT与FFT的优化技巧…
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 \[A(x)=\sum \limits_{i=0}^{n-1}a_ix^i\] \[=a_0+a_1x+a_2x^2+\dots+a_{n-1}x^{n-1}\] 点值表示法 将\(n\)个互不相同的\(x\)代入多项式,会得到\(n\)个互不相同的取值\(y\).设他们组成的\(n\)维向量分别…
多项式 定义 形如\(A(x)=\sum_{i=0}^{n-1} a_i x^i\)的式子称为多项式. 我们把\(n\)称为该多项式的次数界. 显然,一个\(n-1\)次多项式的次数界为\(n\). 运算法则 设\(A(x)\)和\(B(x)\)为多项式,且次数界分别为\(n\),\(m\).则有: \(A(x)=\sum_{i=0}^{n-1}a_i x^i\) \(B(x)=\sum_{i=0}^{m-1}b_i x^i\) 他们遵循下面的常用运算法则: \(A(x)+B(x)=\sum_{…
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformation, 快速傅里叶变换, 是DFT(Discrete Fourier Transform, 离散傅里叶变换)的快速实现版本. 据说在信号处理领域广泛的应用, 而且在OI中也有广泛的应用(比如SDOI2017 R2至少考了两道), 所以有必要学习一波.. 划重点: 其实学习FFT最好的教材是<算法导论…
FFT学得还是有点模糊,原理那些基本还是算有所理解了吧,不过自己推这个推不动. 看的资料主要有这两个: http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform https://www.zybuluo.com/397915842/note/37965 这儿简单做做笔记. 多项式点值表示 首先$FFT$可以用来快速计算两个多项式的乘积. 一个$n$次多项式(最高次为$n$),可以用系数表…
Manache算法 定义:是一个判断回文子串的算法,我们结合例题解释: 题目:给定一个长度为 n 的字符串 S,求其最长回文子串 一个字符串是回文的,当且仅当反转后的串与原串完全相等 分析:对于这个题目,有三种主流思路: 一:Hash+二分 计算字符串的前缀hash值 枚举中点,二分回文字串的长度 时间复杂度:$O(nlogn)$ 二:回文自动机 复杂度是线性的,但是编程复杂度极高,思维难度极高. 三:Manache算法 复杂度是线性的,思维难度低,编程难度低 讲解Manache方法 对于Man…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) 的流程,我也不准备长篇大论地分析\(FFT...\) 将系数表示法转换为点值表示法 \(O(n \log n)​\) 对于点值表示法直接进行操作 \(O(n)\) 将点值表示法转换为系数表示法 \(O(n \log n)​\) 这样的流程,最终复杂度是\(O(n \log n)\) 的,现在我们从最…