使用Python,字标注及最大熵法进行中文分词 在前面的博文中使用python实现了基于词典及匹配的中文分词,这里介绍另外一种方法, 这种方法基于字标注法,并且基于最大熵法,使用机器学习方法进行训练,将训练出的模型 用于中文分词,效果优于基于词典及匹配的分词方法. Table of Contents 1 背景知识 2 分词思想 2.1 以字分词 2.2 机器学习 3 实验及代码 3.1 数据来源 3.2 各部分数据示例 3.3 各部分代码示例 1 背景知识 2002年以前,自动分词方法基本上基于…
对于分词系统的实现来说,主要应集中在两方面的考虑上:一是对语料库的组织,二是分词策略的制订. 1.   Tire树 Tire树,即字典树,是通过字串的公共前缀来对字串进行统计.排序及存储的一种树形结构.其具有如下三个性质: 1)      根节点不包含字符(或汉字),除根节点以外的每个节点只能包含一个字符(汉字) 2)      从根节点到任一节点的路径上的所有节点中的字符(汉字)按顺序排列的字符串(词组)就是该节点所对应的字符串(词组) 3)      每个节点的所有直接子节点包含的字符(汉字…
http://www.tuicool.com/articles/zq2yyi   http://blog.csdn.net/u010189459/article/details/38546115 主题 中文分词Python 本文运用字标注法进行中文分词,使用4-tag对语料进行字标注,观察分词效果.模型方面选用开源的条件随机场工具包“ CRF++: Yet Another CRF toolkit ”进行分词. 本文使用的中文语料资源是SIGHAN提供的 backoff 2005 语料,目前封闭测…
中文分词技术 中文自动分词可主要归纳为“规则分词”“统计分词”和“混合分词”,规则分词主要是通过人工设立词库,按照一定方式进行匹配切分,实现简单高效,但对新词很难进行处理,统计分词能够较好应对新词发现能特殊场景,但太过于依赖语料的质量,因此实践中多是采用两者的结合,即混合分词. 1.1 规则分词 基于规则的分词是一种机械分词方法,主要是通过维护词典,在切分语句时,将语句的每个字符串与词表中的词进行逐一匹配,找到则切分,否则不予切分. 按照匹配切分的方式,主要有正向最大匹配法.逆向最大匹配法以及双…
http://spaces.ac.cn/archives/3924/ 关于字标注法 上一篇文章谈到了分词的字标注法.要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了.在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题:第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词…
python排序之二冒泡排序法 如果你理解之前的插入排序法那冒泡排序法就很容易理解,冒泡排序是两个两个以向后位移的方式比较大小在互换的过程好了不多了先上代码吧如下: 首先还是一个无序列表lis,老规矩打印出来和最后排序对比看,函数方法bubbie_sort冒泡排序,count计数也就是列表长度len(列表),第一个for循环取列表中的第一个值然后向后位移,第二个for循环取列表i+1也就是第二个值向后位移,这表是第二个for只会取第一个for后面的值好做比较,count长度一直15,如果两个不一…
Python的生成器进阶玩法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.yield的表达式形式 #!/usr/bin/env python #_*_coding:utf-8_*_ #@author :yinzhengjie #blog:http://www.cnblogs.com/yinzhengjie/tag/python%E8%87%AA%E5%8A%A8%E5%8C%96%E8%BF%90%E7%BB%B4%E4%B9%8B%E8%B7%AF/ #EMAIL:y…
本文从阐述Python实现客观赋权法的四种方式: 一. 熵权法 二. 因子分析权数法(FAM) 三. 主成分分析权数法(PCA) 四. 独立性权系数法 Python实现客观赋权法,在进行赋权前,先导入数据(列:各维属性:行:各样本),并自行进行去空值.归一化等操作. import pandas as pd import numpy as np data=pd.DataFrame(pd.read_excel('路径')) 一. 熵权法 若某个指标的信息熵越大(即离散程度越大),表明指标提供的信息量…
Python函数标注 是关于用户自定义函数中使用的类型的完全可选元数据信息. 函数标注 以Python字典的形式存放在函数的 __annotations__ 属性中,并且不会影响函数的任何其他部分. 形参标注的定义方式是在形参名称后加上冒号,后面跟一个表达式,该表达式会被求值为标注的值. 返回值标注的定义方式是加上一个组合符号 ->,后面跟一个表达式,该标注位于形参列表和表示 def 语句结束的冒号之间. 下面的示例有一个位置参数,一个关键字参数以及返回值带有相应标注: >>> d…
用数学工具解决实际问题仅有的要求可能就是懂一点概率知识和程序设计.而贝叶斯方法是一种常见的利用概率学知识去解决不确定性问题的数学方法,对于一个计算机专业的人士,应当熟悉其应用在诸如机器翻译,语音识别,垃圾邮件检测等常见的计算机问题领域. 在共计15章的篇幅中讨论了怎样解决十几个现实生活中的实际问题.在这些问题的解决过程中,还潜移默化的帮助形成建模决策的方法论,建模误差和数值误差怎么取舍,怎样为具体问题建立数学模型,如何抓住问题中的主要矛盾(模型中的关键参数),再一步一步的优化或者验证模型的有效性…