枚举最短路径+SPFA】的更多相关文章

Harry Potter and the Final Battle Submit Status Description The final battle is coming. Now Harry Potter is located at city 1, and Voldemort is located at city n. To make the world peace as soon as possible, Of course, Harry Potter will choose the sh…
Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tram network in Zagreb consists of a number of intersections and rails connecting some of them. In every intersection there is a switch pointing to the o…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计…
P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE). SPFA和Dijkstra不同的是: Dijkstra  是从一个点的所有出边中找到一个最短出边,用它来继续更新下边的点    SPFA     是用一个点的所有出边都更新它下面的点 更新之前把这个点存进队列 更新时把他拿出来,再把更新的…
一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都是无用的,大致描述为下图(分割线以左为已确定最短路的顶点): 其中红色部分为所做无用的边,蓝色部分为实际有用的边.既然只需用到中间蓝色部分的边,那就是SPFA算法的优势之处了. 二.算法描述 算法特点:在 Bellman-ford 算法的基础上加上一个队列优化,减少了冗余的松弛操作,是一种高效的最短…
这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该边.而 Dijkstra 算法如果某一条边松弛后就认为该边已经是该连接点到源点的最短路径了,不会重复检查更新. Dijkstra只能保证局部最优解而不会保证该解是全局最优解) 实现方法: 建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该…
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i…
求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们想要求出每一对顶点之间的最短路径的话,还可以用Floyd-Warshall. SPFA是这篇日志要写的一种算法,它的性能非常好,代码实现也并不复杂.特别是当图的规模大,用邻接矩阵存不下的时候,用SPFA则可以很方便地面对临接表.每个人都写过广搜,SPFA的实现和广搜非常相似. 如何求得最短路径的长度…
题目链接 /* *题目大意: *给定v个点的重量,并给定e条边,每条边具有一个权值; *在e条边中选v-1条边使这v个点成为一棵树; *定义这棵树的代价为(每棵子树节点重量和其子树根到父节点的边的权值的乘积)之和; *求以1为根节点的树的最小代价; * *算法思想: *每个点的价值为该点到达根结点所需经过的边权之和乘以该结点重量; *即要让到达每个结点经过的边的单位价格之和最小; *即可转化为最短路问题; *做的时候WA了很多次,需要考虑各种细节问题; *精度问题,用long long; *没答…
差分约束系统,求最小值,跑最长路. 转自:https://www.cnblogs.com/ehanla/p/9134012.html 题解:设sum[x]为前x个咕咕中至少需要赶走的咕咕数,则sum[b]−sum[a−1]>=c表示[a,b]区间至少赶走c只.题目中选择的是最少,我们需要跑最长路,因存在负边,所以以SPFA进行操作. d[v]>=d[u]+w,前面我们可以推出第一个式子sum[b]>=sum[a−1]+c,但是如果只连这些边,整张图连通不起来.我们发现i和i+1存在关系0…