转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5946041.html 参考网址: http://caffe.berkeleyvision.org/tutorial/interfaces.html http://www.cnblogs.com/denny402/p/5076285.html 1. 如果直接训练时,test.sh中内容如下: ./build/tools/caffe train --solver=examples/XXX/lenet_s…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索. caffe中batchNorm层是通过BatchNorm+Scale实现的,但是默认没有bias.torch中的BatchNorm层使用函数SpatialBatchNormalization实现,该函数中有weight和bias. 如下代码: local net = nn.Sequential() net:add(nn.SpatialBatch…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5909121.html 参考网址: http://www.cnblogs.com/wangxiaocvpr/p/5096265.html 可以根据caffe-master\examples\imagenet \readme.md进行理解. 1 生成LmDB格式文件 caffe中通过图像生成lmdb格式文件的程序为examples/imagenet/create_imagenet.sh.该文件调用bui…
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…
模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设计特殊作用的网络,在用Caffe做工程时,融合都是一个常见的步骤. 比如考虑下面的场景,我们有两个模型,都是基于resnet-101,分别在两拨数据上训练出来的.我们希望把这两个模型的倒数第二层拿出来,接一个fc层然后训练这个fc层进行融合.那么有两个问题需要解决:1)两个模型中的层的名字都是相同的…
一. 卷积层的作用简单介绍 卷积层是深度神经网络中的一个重要的层,该层实现了局部感受野.通过这样的局部感受野,能够有效地减少參数的数目. 我们将结合caffe来解说详细是怎样实现卷积层的前传和反传的. 至于是怎样前传和反传的原理能够參考Notes on Convolutional Neural Networks.详细请百度或者谷歌,就可以下载到. Caffe中的master分支已经将vision_layers.hpp中的各个层分散到layers中去了.因此假设你是主分支的代码.请在include…
resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型.我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体.然而,我们平常接触到数据集的规模通常在这两者之间. 假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户.一种可…
首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代码的具体的话,可以看:http://blog.csdn.net/xizero00/article/details/50921692,写的还是很不错的(不过有的地方的备注不对,不知道改过来了没). 文件 filler.hpp提供了7种权值初始化的方法,分别为:常量初始化(constant).高斯分布初…
caffe默认使用的数据格式为lmdb文件格式,它提供了把图片转为lmdb文件格式的小程序,但是呢,我的数据为一维的数据,我也要分类啊,那我怎么办?肯定有办法可以转为lmdb文件格式的,我也看了一些源代码,好像是把我们的数据变为Datum的格式(这是一个用google protocol buffer搞的一个数据结构类),然后再把它存为lmdb文件.在Datum里面,label为Int类型,要是我们label为符点数,我还怎么用??(不过看到Datum里面有个float_data的东西,怎么用啊,…
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov's Accelerated Gradient (type: "Nes…