OpenCV——识别印刷体数字】的更多相关文章

数字识别和其他的所有计算机视觉相关的应用都会分为两个步骤:ROI抽取和识别. 1. ROI抽取即将感兴趣的区域从原始图像中分离初来,这个步骤包括二值化,噪点的消除等2. 识别即通过一些分类器将第一步中的结果进行分类,事实上属于机器学习的一个典型应用 数字识别步骤: 1.先处理图像: 转换为灰度值(灰度图较之原始图片,将三个维度的矩阵变成了一个维度) 转换为二值图(二值图即将灰度图转换成黑白图,每个点只有两种可能:非黑即白) Mat srcImage = imread("number.png&qu…
这个是树莓派上运行的, opencv3 opencv提供了一张手写数字图片给我们,如下图所示,可以作为识别手写数字的样本库. 0到9共十个数字,每个数字有五行,一行100个数字.首先要把这5000个数字截取出来. 图片大小为1000*2000,则每个数字块大小为20*20. 1.截取样本并存储 以下代码为截取以上数字并将其存储在矩阵中的过程 训练的数据,一般都会是两个矩阵,一个矩阵存放着数据图像,另一个矩阵存放数据图像对应的数字 Mat src = imread("sample.png"…
本篇只给出实现的代码,下一篇将讲一讲实现的原理,及其Adline网络中的LMS算法原理. 包含两个类: package com.cgjr.com; import java.security.DigestInputStream; import java.util.Arrays; import org.neuroph.core.data.DataSet; import org.neuroph.core.data.DataSetRow; import org.neuroph.core.events.L…
Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小,用一个数组记录相应Y轴的坐标: 3.因为是水平切割我们只需要Y轴的切割点即可,宽度默认图像的宽,高度可以用相邻的切割点相减得到: 4.优化切割点,把切割点靠近的都清除掉 5.设置感应区的区域,切割图片 垂直投影法和水平投影法类似,对比思考一下 因为我做的是表格的切割,你如果想实现验证码的切割,或者…
Java基于opencv实现图像数字识别(四)-图像降噪 我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类 这个工具类呢,就一个成员变量Mat,非常的简单,这里给出代码 public class ImageUtils { private static final int BLACK = 0; private static final int WHITE = 255; private Mat mat; /** * 空参构造函数 */…
Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字节存放灰度值(又称强度值.亮度值),灰度范围为0-255.一般常用的是加权平均法来求像素点的灰度值,opencv开发库所采用的一种求灰度值算法如下: :)Gray = 0.072169 * B + 0.715160 * G + 0.212671 * R 有两种方式可以实现灰度化,如下 方式1 @Te…
Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要是表格中数字的识别,但这个不是重点.重点是通过这个我们可以举一反三,来实现我们自己的业务. 图像的识别主要分为两步:图片预处理和图像识别:这两步都很重要 图像预处理: 1. 图像灰度化:二值化 2. 图像降噪,去除干扰线 3. 图像腐蚀.膨胀处理 4. 字符分割 5. 字符归一化 图像识别: 1.…
Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用BufferedImage这个类进行操作:尝试着做了一下,做到灰度化,和二值化就做不下去了:然后几乎就没有啥java的资料了,最多的好像都是c++,惹不起.惹不起...... 我也想尝试着用c++做一下,百度到了c++基于opencv来做图像识别的:但是要下vs啊,十几个g呢,我内存这么小,配置这么麻烦,而且vs…
原文链接:http://coolshell.cn/articles/10590.html#jtss-tsina 识别二维码的项目数不胜数,每次都是开箱即用,方便得很. 这次想用 OpenCV 从零识别二维码,主要是温习一下图像处理方面的基础概念,熟悉 OpenCV 的常见操作,以及了解二维码识别和编码的基本原理. 作者本人在图像处理方面还是一名新手,采用的方法大多原始粗暴,如果有更好的解决方案欢迎指教. QRCode 二维码有很多种,这里我选择的是比较常见的 QRCode 作为探索对象.QRCo…
OpenCV识别技术# 老师:james 20181019 # 识别技术# Pycharm + Python3 + OpenCV """ 一.识别技术: 什么是OpenCV?物体识别,图像的分隔,人脸识别,机器视觉.OpenCV底层:C语言和C++写的. 二.Python怎么去实现?4个案例 案例思路:案例一:显示图片1.导入OpenCV库2.加载图片3.创建一个显示窗口4.显示图片5.暂停窗口6.手动销毁窗口(释放资源)  …
运行效果: public class VoicePriceRecognition { private final static String NOT_HAS_PRICE_CONTENT="no price"; //private static final Logger vineLogger = Vine.getLogger(VoicePriceRecognition.class); private static final Character[] PRICE_UNIT = {'元','…
前言 因工作需要,需要定位图片中的二维码:我遂查阅了相关资料,也学习了opencv开源库.通过一番努力,终于很好的实现了二维码定位.本文将讲解如何使用opencv定位二维码. 定位二维码不仅仅是为了识别二维码:还可以通过二维码对图像进行水平纠正以及相邻区域定位.定位二维码,不仅需要图像处理相关知识,还需要分析二维码的特性,本文先从二维码的特性讲起. 1 二维码特性 二维码在设计之初就考虑到了识别问题,所以二维码有一些特征是非常明显的. 二维码有三个“回“”字形图案,这一点非常明显.中间的一个点位…
参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二维码识别代码简析 1.使用Qrdetector实现二维码检测 opencv中的QRCodeDetector类可以实现二维码的定位,识别功能,由于本项目使用的是自己设计的二维码,因此暂时只使用到QRCodeDetector的检测功能 函数接口 bool detect (InputArray img,…
腐蚀:去除图像表面像素,将图像逐步缩小,以达到消去点状图像的效果:作用就是将图像边缘的毛刺剔除掉 膨胀:将图像表面不断扩散以达到去除小孔的效果:作用就是将目标的边缘或者是内部的坑填掉 使用相同次数的腐蚀和膨胀,可以使目标表面更平滑:但也有场景限制,就是如果去噪不干净的话,会出现意想不到的结果,尽量别使用 大概的效果,适合降噪比较干净的图 // 图像腐蚀/膨胀处理 public void erodeImg() { Mat outImage = new Mat(); // size 越小,腐蚀的单位…
摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作. 程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成.并在Windows xp-32位系统…
阅读本文约“2.2分钟” TensorFlow框架 ——TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统 ——可被用于语音识别或图像识别等多项机器学习和深度学习领域 ——TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统 ——TensorFlow支持CNN.RNN和LSTM算法,这都是目前在Image,Speech和NLP最流行的深度神经网络模型 MNIST数据集 ——有Google和纽约大学克朗研究所共同建立的手写数字的数据库…
//src:待分割的二值图,最大值为255 //segMat:分割好的每个图片 //算法:判断连通域,有几个连通域就会分割成几个子图片 //用途:手写数字识别中进行无黏连数字的分割 void getConnectedDomain(cv::Mat &src, vector<cv::Mat>& segMat)//segMat为最终结果,存放分割好的每个数字 { int img_row = src.rows; int img_col = src.cols; cv::Mat flag…
好久没有发OpenCV的博客了,最近想到了一个识别地图轮廓的方案,就写来试试.(识别中国的28个省份地图轮廓,不考虑直辖市) 首先,我的基本思路是  用最小的矩形将地图的轮廓圈出来,可以根据长方形的长宽比判断,也可将其缩放至特定的大小,计算其轮廓上的像素个数来判断. 缺点:用摄像头读取图片时,使用这种方法会有一些误差. 也可以ANN训练识别,但是这样做效率低. step 1. 读取图片.处理图像 Mat src = imread("12.jpg"); Mat grayImage; cv…
概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究代码(慢,不稳定,独立并与其他库不兼容) 2.耗费很高的商业化工具(比如Halcon, MATLAB+Simulink) 3.依赖硬件的一些特别的解决方案(比如视频监控,制造控制系统,医疗设备)这是如今的现状,而标准的API将简化计算机视觉程序和解决方案的开发,OpenCV致力于成为这样的标准API…
在本系列文章中,我们将使用深度神经网络(DNN)来执行硬币识别.具体来说,我们将训练一个DNN识别图像中的硬币. 在本文中,我们将描述一个OpenCV应用程序,它将检测图像中的硬币.硬币检测是硬币完整识别之前的一个常见阶段.它包括从给定图像中检测和提取硬币. 本系列附带的代码将使用Keras在C#中实现.在本系列的最后一篇文章中,我们将简要地使用ML.NET.在众多选择中,为什么要使用Keras.NET呢?Keras.NET 非常容易学习,因为它基本上是从Python编写的经典TensorFlo…
概述 车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常来讲如果结合opencv进行车牌识别主要分为四个大步骤,分别为: 图像采集 车牌定位 分割车牌字符 字符识别 当然,如果结合了机器学习可能步骤会变得更为精简,但是从opencv基础方法开始也不失为一种学习进步,此案例仅仅从蓝牌车牌入手,作为学习交流用,暂不打算花时间研究绿牌.黄牌车等车牌识别. 图像采集我们直接掠过,现在假设我们已经完成了图像采集,得到了包含车牌的图片.我们直接从车牌定位开始. *** 文中的车辆.车牌均来自网…
参考:https://www.bbsmax.com/A/rV57LjWGdP/ https://blog.csdn.net/louislong007/article/details/47683035 简易验证码样例: 验证码识别流程: 首先进行图像获取:火狐浏览器,找到获取验证码地址,获取验证码图像,传递给类,直接获取到验证码! 验证码获取: /// <summary> /// 通过GET方式获取验证码 /// </summary> /// <param name="…
参考这个网站,然后自己 找了张图片试了一下 http://blog.csdn.net/cp562090732/article/details/47804003 // test.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include "cv.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui…
简书教程:https://www.jianshu.com/p/41127bf90ca9 博客园教程(较详细):https://www.cnblogs.com/qqandfqr/p/7866650.html 个人总结:如上面两位大哥所属基本思路都是一样的 即: 1.图片降噪 灰度以及二值化 2.图片切割(也可以整体识别) 3.识别后图像文本输出 import cv2 as cv from PIL import Image import pytesseract as tess def open_de…
#!/usr/bin/python #coding=utf-8 # 识别图片中的人脸 import face_recognition jobs_image = face_recognition.load_image_file("C:/rlsb/jobs.jpg"); obama_image = face_recognition.load_image_file("C:/rlsb/obama.jpg"); unknown_image = face_recognition…
遇到的问题: 1 持续灰色图像框 waitkey()要在imshow()之前调用. 2 CvRect 和Rect CvXXX是C语言的接口,cv::XXX是C++语言的接口.两者混在一起容易出错 3 分类器detectMultiScale各个参数的作用 CascadeClassifier::detectMultiScale(const Mat& image, vector<Rect>& objects, double scaleFactor=1.1,int minNeighbo…
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:刘潇龙 前言 首先需要说明,这里所说的数字识别不是手写数字识别! 但凡对机器学习有所了解的人,相信看到数字识别的第一反应就是MNIST.MNIST是可以进行数字识别,但是那是手写数字.我们现在要做的是要识别从九宫格图片中提取出来的印刷体的数字.手写数字集训练出来的模型用来识别印刷体数字,显然不太专业.而且手写体跟印刷体相差不小,我们最看重的正确率问题不能保证. 本文从零开始做一遍数字识别,展示了数字识…
现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别. 由于公司业务需要,需要开发一个客户端程序,同时需要在xp这种老古董的机子上运行,故研究了如下几个数字识别方案: ocr 识别的不同选择方案 tesseract 放弃:谷歌的开源tesseract ocr识别目前最新版本不支持xp系统 云端ocr 识别接口(不适用) 费用比较贵: 场景不同,我们的需求是可能毫秒级别就需要调用一次ocr 识别…
#include "cv.h" #include "highgui.h" #include "cxcore.h" #include <stdlib.h> #include <stdio.h> #define N 5//载入数字图片个数 char *testPic[] = {"test1.jpg"}; ; //二值化阀值 ; //识别数字轮廓长度的下限 单位(像素) ; //识别数字轮廓长度的上限 //数…
欢迎大家关注我的微信公众号:FPGA开源工作室     基于FPGA的数字识别的实现二 作者:lee神 1 背景知识 1.1基于FPGA的数字识别的方法 通常,针对印刷体数字识别使用的算法有:基于模版匹配的识别方法.基于BP 神经网络的识别方法.基于数字特征的识别方法等.下文将对这几种算法进行讨论以及比较.   1>模版匹配法    模版匹配法是一种被较早应用的数字识别算法,该算法的关键是对所要识别的所有数字进行模版构建,之后将图像中的数字与所有的数字模版一一进行比较,计算出图像中数字与每个模版…