贪心,递推,线段树,$RMQ$. 假设我们记$ans[i]$是以$i$点为起点对答案的贡献,那么答案就是$\sum\limits_{i = 1}^n {ans[i]}$. $ans[i]$怎么计算呢? 首先,$[i+1,a[i]]$区间上肯定都是$1$(即上图紫线). 然后在$[i+1,a[i]]$上找到一个$tmp$,使得$tmp$点能够达到的最右端是$[i+1,a[i]]$中最大的,那么$[a[i]+1,a[tmp]]$肯定都是2(即上图绿线). 然后在$[a[i]+1,a[tmp]]$找一…