poj3233(矩阵快速幂)】的更多相关文章

题目链接:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 28105   Accepted: 11461 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input Th…
题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵    将 S 取幂,会发现一个特性: Sk +1右上角那一块不正是我们要求的 A+A2+...+Ak 于是构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵. 时间降为O(n3log2k) PS.减去单位矩阵的过程中要防止该位置小于零. #include<iostream> #include<cstdio> #inclu…
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k<=10^9.这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模…
题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个矩阵是A矩阵称为分块矩阵,在性质满足的前提下依然满足矩阵加法乘法. 例如矩阵乘法A×B,将B按行分块,可以看成矩阵A乘列向量,其中B中每个元素是一个行向量:将A按列分块同理. 简单地说,就是矩阵里的元素还是个矩阵.这道题我们可以像这样构建矩阵: ∵Sn=Sn-1+Ak   ∴有如下转移图      …
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Google Codejam Round 1A的C题. #include <bits/stdc++.h> typedef long long ll; const int N = 5; int a, b, n, mod; /* *矩阵快速幂处理线性递推关系f(n)=a1f(n-1)+a2f(n-2)+.…
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模)   Input 一个数n,表示长度.(n<1e15) Output 长度为n的非010串的个数.(对1e9+7取模) Input示例 3 Output示例 7 解释: 000 001 011 100 101 110 111 读完题,这样的题目肯定是能找到规律所在的,要不然数据太大根本无法算.假设现在…
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; ; ; int n, m; struct Mat{//矩阵 ll mat[N][N]; }; Mat operator * (Mat a, Mat b){//一次矩阵乘法…
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. 在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2) = b,求f(n) 思路:对矩阵快速幂的了解仅仅停留在fib上,重现赛自己随便乱推还一直算错,快两个小时才a还wa了好几次.... 主要就是构造矩阵:(n+1)^4 = n^4 + 4n^3 + 6n^2 + 4n + 1 |1   2   1   4   6   4   1|     |  …
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输入3个数:A,B,N.数字之间用空格分割.(-10000 <= A, B <= 10000, 1 <= N <= 10^9) Output 输出f(n)的值. Input示例 3 -1 5 Output示例 6题意:f(n) = (A * f(n - 1) + B * f(n - 2)…