目录 线性代数中的线性方程组 线性方程组 行化简解法和阶梯型矩阵 向量方程 矩阵方程$Ax = b$ 线性代数中的线性方程组 第一章从线性方程组的角度,通过解线性方程组,开始解释数学矩阵,以及和线性代数的联系 线性方程组 形如\(a_1x_1+a_2x_2+a_3x_3+....+a_nx_n=b\),其中\(a_1...a_n\)为实数或者复数. 对于一个线性方程组,所有可能的解称为他的解集,如果两个方程组,具有相同的解集,那么我们说这两个方程组等价的. 对于一个线性方程组,他的解有三种情况:…
利用Python学习线性代数 -- 1.1 线性方程组 本节实现的主要功能函数,在源码文件linear_system中,后续章节将作为基本功能调用. 线性方程 线性方程组由一个或多个线性方程组成,如 \[ \begin{array}\\ x_1 - 2 x_2 &= -1\\ -x_1 + 3 x_2 &= 3 \end{array} \] 求包含两个变量两个线性方程的方程组的解,等价于求两条直线的交点. 这里可以画出书图1-1和1-2的线性方程组的图形. 通过改变线性方程的参数,观察图形…
摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det()函数计算各个矩阵的行列式来求,也可以用高斯消元法来求解. matlab中的rref()函数可以将矩阵化成行最简形式,用法如下: 假如有一线性方程组为: 16 x1 + 2 x2 + 3 x3 = 13 5 x1 + 11 x2 + 10 x3 = 8 9 x1 + 7 x2 + 6 x3 = 12…
用 python 解决线性代数中的矩阵运算 矩阵叉乘 矩阵求逆 矩阵转置 假定AX=B,求解未知矩阵X 矩阵的行列式值|matrix| 未完待续..... import sys from PyQt5.QtWidgets import * import numpy as np class Form(QDialog): def __init__(self, parent=None): super().__init__(parent) grid = QGridLayout() self.setWind…
第1章 线性代数中的线性方程组 (已看) 介绍性实例 经济学与工程中的线性模型 1.1 线性方程组 1.2 行化简与阶梯形矩阵 1.3 向量方程 1.4 矩阵方程Ax=b 1.5 线性方程组的解集 1.6 线性方程组的应用 1.7 线性无关 1.8 线性变换介绍 1.9 线性变换的矩阵 1.10 经济学,科学和工程中的线性模型 第2章 矩阵代数 介绍性实例 飞机设计中的计算机模型 2.1 矩阵运算 2.2 矩阵的逆 2.3 可逆矩阵的特征 2.4 分块矩阵 2.5 矩阵因式分解 2.6 列昂惕夫…
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众多模块也属于美国技术的范围,但开源软件的自由度毕竟不是商业软件可比拟的. 本文是一篇入门性文章,以麻省理工学院(MIT) 18.06版本线性代数课程为例,按照学习顺序介绍PYTHON在代数运算中的基本应用. 介绍PYTHON代数计算的文章非常多,但通常都是按照模块作为划分顺序,在实际应用中仍然有较多…
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解:A=CD  ,  A是m×n矩阵,C是m×4矩阵,D是4×n矩阵. 奇异值分解:A=UDVT 谱分解: 在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵.下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y…
基于我们在线性代数中学习过的知识,我们知道解线性方程组本质上就是Gauss消元,也就是基于增广矩阵A的矩阵初等变换.关于数学层面的内容这里不做过多的介绍,这里的侧重点是从数值计算的角度来看这些常见的问题. 那么基于Gauss消元的算法,我们将会很好理解如下的Matlab代码: for j = 1:n-1 for i = j+1 : n mult = A(i,j)/A(j,j); A(i,:) = A(i,:) – mult*A(j,:);    %这里改写成A(i , j:n) = A(i,j:…
向量: 向量的基本运算:向量的运算最基本的一件事情,就是基于它n个分量上进行,即对于两个分量的向量a = <a1,a2>,b = <b1,b2>,有a + b = <a1+b1,a2+b2>.聪明的读者可能已经想到了,这其实是与我们在高中物理的力学中所谓的“正交分解”是相互呼应的,而其实也是基于此,我们能够得到我们熟悉的所谓“平行四边形法则”.“三角形法则”. 更全面的向量的代数性质,下表给出. 向量方程: 我们进行进一步的转化. 可以看到,解向量方程的过程本质上回到了…
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析中,用来解线性方程.求反矩阵或计算行列式. 什么是LU分解 如果有一个矩阵A,将A表示成下三角矩阵L和上三角矩阵U的乘积,称为A的LU分解. 更进一步,我们希望下三角矩阵的对角元素都为1: 一旦完成了LU分解,解线性方程组就会容易得多. LU分解的步骤 上一章讲到,对于满秩矩阵A来说,通过左乘一个消…