目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合法操作,则这名选手判负: 则称该游戏为一个公平组合游戏. Nim游戏 有若干堆石子,每堆石子的数量都是有限的,合法的移动是"选择一堆石子并拿走若干颗(不能不拿)",如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动). mex(minimal exdudant…
简单取石子游戏,SG函数的简单应用. 有时间将Nim和.SG函数总结一下……暂且搁置. #include <cstdio> #include <cstring> #define N 1002 int n, T, m, sg[N]; bool vis[N]; int main() { scanf("%d", &T); while (T--) { scanf("%d%d", &n, &m); sg[0] = 0; for…
Nim游戏 Nim游戏定义 Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”(以下简称ICG).满足以下条件的游戏是ICG(可能不太严谨):1.有两名选手:2.两名选手交替对游戏进行移动(move),每次一步,选手可以在(一般而言)有限的合法移动集合中任选一种进行移动:3.对于游戏的任何一种可能的局面,合法的移动集合只取决于这个局面本身,不取决于轮到哪名选手操作.以前的任何操作.骰子的点数或者其它什…
uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数) uoj 题解时间 考虑如何求出每棵树(子树)的 $ SG $ . 众所周知一个状态的 $ SG $ 是其后继的 $ mex $ . 考虑其后继的 $ SG $ 如何求. 对于将 $ y $ 的贡献计算到其父亲 $ x $ 上. 如果删掉 $ x $ ,后继状态是所有儿子的 $ SG $ 异或, 如果删掉 $ y $ 以内的点,则是用 $ y $ 子树内的所有后继状态异或上 $ x $ 子树内 $ y $ 子树外的部分. 这…
写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的NIM游戏不得不提一下,这也是要不断提醒自己别忘了NIM游戏才是SG函数由来的核心关键! 1. 若干堆石头. 2. 甲和乙轮流从任意堆中取任意个石头. 3. 谁不能取就输. 分析: 对于一个博弈来说,P-position表示previous,代表先手必败,即后手必胜,N-position表示next,…
今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这句话没有什么卯月) 在OI中,博弈论的主要应用是一些经典的模型,以及sg函数,sj定理的应用. 首先我们来看博弈论最为经典的模型之一:Nim游戏 有n堆石子,每次可以从其中任意一堆石子中取出若干块石子(可以取完),不能不取. 最后无石子可取者为输家.假设两人都按最优情况走,问是否先手必胜. 为了计算…
说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里我们讨论的是公平游戏(ICG游戏:Impartial Combinatorial Games),满足: 1.双方每步的限制相同(轮流) 2.游戏有尽头 对于当前局面的玩家如果能有必胜策略,那就是N局面(反之,P局面) SG函数 每一种决策以及后面的所有可能可以抽象成有向无环图,而sg函数的计算就类似图上dp的…
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status][Discuss] Description 聪 聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子.标号为 i,j,k, 并要保证 i < j ,…
有若干堆石子,两人轮流从中取石子,取走最后一个石子的人为胜利者 以下的性质是显然的 .无法移动的状态是必败态 .可以移动到必败态的局面一定是非必败态 .在必败态做所有操作的结果都是非必败态 在普通Nim游戏中,a1^a2^a3^……^an=0是必败态 如果没有限制每次可以取走的石子的数量的话,就不用引入SG函数了 否则 .可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+); .可选步数为任意步,SG(x) = x; .可选步数为一系列不连续的数,用GetSG()计算 可以…
题意:小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作, 他想问你他是否有必胜策略,如果有,第一步如何取石子 n<=10,a[i]<=1000,m<=10,b[i]<=10 思路:求一下SG函数再枚举一下方案…… #include<cstdio> #include<cstring> #include<iostream> #i…
提议分析: 1 <= N <= 4747 很明显应该不会有规律的,打表发现真没有 按题意应该分成两种情况考虑,然后求其异或(SG函数性质) (1)找出单独的一个(一列中只有一个) (2)找出连续的两个都没有涂色的求SG值(打表) #include<stdio.h> #include<string.h> #define Max 4750 int dp[Max]; int mex[Max]; int flag[Max]; void Gsdp() { int i,j; int…
题目链接 先打一个sg函数的表,找找规律,发现sg函数可以递归求解 打表代码如下 #include<bits/stdc++.h> using namespace std; typedef long long LL; ; bool vis[N]; int sg[N]; int k; void init() { memset(sg,,sizeof(sg)); memset(vis,false,sizeof(vis)); sg[]=,sg[]=; ;i<=;i++) { memset(vis,…
题目链接 先打一个sg函数的表,找找规律,发现sg函数可以递归求解 打表代码如下 #include<bits/stdc++.h> using namespace std; typedef long long LL; ; bool vis[N]; int sg[N]; int k; void init() { memset(sg,,sizeof(sg)); memset(vis,false,sizeof(vis)); sg[]=,sg[]=; ;i<=;i++) { memset(vis,…
题意:TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度. TBL先手两人轮流,无法操作的人输. 他们以最佳策略一共进行了10轮(每次一盒).你能预测胜负吗? 如果TBL胜则输出”NO”,否则输出”YES” n<=14,a[i]<=1e9 思路:一个结论:Nim游戏中一个xor和不为0(先手必胜)的状态一定可以通过1步转化为xor和为0(先手必败)的状态 所以先手第一步只需要取出一个xor和为0的最长子序列 若后手选择加入新巧克力棒,先手…
题意: 给出几堆石子数量,每次可以取走一堆中任意数量的石头,也可以将一堆分成两堆,而不取.最后取走者胜. 思路: 先规矩地计算出sg值,再对每个数量查SG值就可以了.最后求异或和.和不为0的就是必赢. SG打表 #include <bits/stdc++.h> using namespace std; , limit=; ,,}; bool B[limit]; int main() { //freopen("input.txt", "r", stdin)…
Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; #define maxn 1003 int arr[13],step[13],SG[maxn]; bool vis[maxn]; int main(){ //freopen("input.in","r",stdin); int n,m,MAX=0,ans=0; scan…
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8198    Accepted Submission(s): 3412 Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1)=1;F(2)=2;…
SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状态SG函数值为0 如果某个局面SG函数值为0,则该局面先手必败 放到有向图中,该有向图的核就是SG值为0的点构成的集合 游戏的和 游戏的和的SG函数值=所有子游戏SG函数值的异或和Xor 如果所有子游戏都进行完毕,那么Xor=0,必败 如果某个状态的SG函数值为0,那么后手一定可以做出一种动作,保持…
博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updated at 2019.8.14. SG函数 在学习博弈论之前,你需要彻底了解 SG 函数. 对于一个两人轮流操作的游戏,我们把游戏的每一种可能的局面设为一种局面. 那么局面只分两种:(对于这一轮操作者的)必胜态和必败态.至于为什么没有不确定态,看完下文你就明白了. 若这一轮操作者从这个局面出发,按最…
参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj3537 有一个长度为n的一维棋盘,两人轮流下子,如果一个人下了连在一起的三个子就立刻赢了,如果一个人下不了子了他就输了.3<=n<=2000 我们可以发现,如果我们在第i个地方落子,游戏就被分解为了两个子游戏:长度为i-3和n-i-2的两个子游戏.(至于为什么我也不好解释啊,就是如果之后都在这些…
哎,被卡科技了,想了三个小时,最后还是大佬给我说是\(SG\)函数. \(SG\)函数,用起来很简单,证明呢?(不可能的,这辈子都是不可能的) \(SG\)定理 游戏的\(SG\)函数就是各个子游戏的\(SG\)函数的\(Nim-sum\)(就是异或和),比如多堆石子的\(SG\)函数就是所有单堆石子\(SG\)函数的异或和. \(SG\)函数 首先定义\(mex(T)\)为\(T\)中未出现的自然数中最小的数,其中\(T \subset N\),如\(mex(0,2,3)=1\),\(mex(…
巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失败 HDU1846 #include<iostream> using namespace std; int main() { int C,N,M; scanf("%d",&C); while(C--) { scanf("%d%d",&N,&a…
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要看“博弈论”的时候.) Nim游戏是博弈论中最经典的模型(之一?),它又有着十分简单的规则和无比优美的结论,由这个游戏开始了解博弈论恐怕是最合适不过了. Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”…
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要看“博弈论”的时候.) Nim游戏是博弈论中最经典的模型(之一?),它又有着十分简单的规则和无比优美的结论,由这个游戏开始了解博弈论恐怕是最合适不过了. Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”…
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要看“博弈论”的时候.) Nim游戏是博弈论中最经典的模型(之一?),它又有着十分简单的规则和无比优美的结论,由这个游戏开始了解博弈论恐怕是最合适不过了. Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”…
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofengcanyuexj/article/details/17119705 SG函数 “Sprague-Grundy函数” 我们将面对更多与Nim游戏有关的变种,还会看到Nim游戏的a1^a2^...^an这个值更广泛的意义. 上面的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法.但如果把Ni…
入门一: 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则:游戏双方轮流取牌:每人每次仅限于取1张.2张或3张牌:扑克牌取光,则游戏结束:最后取牌的一方为胜者. 想一下.. 首先申明一点,博弈的讨论是在大家都玩的最好的情况下讨论的.(如果2个玩家智商有差别,那就没法讨论了----开个玩笑哈.) 介绍概念:P点 即必败点,某玩家位于此点,只要对方无失误,则必败: N点 即必胜点,某玩家位于此点,只要自己无失误,则必胜. 定理: 一. 所有终结点都是必…
给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移 动者判负.事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型. 也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”.下 面我们就在有向无环图的顶点上定义Sprague-Grundy函数.首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这…
此文为以下博客做的摘要: https://blog.csdn.net/strangedbly/article/details/51137432 ---------------------------------------------------------------------------------------- 1.定义P-position和N-positon P表示Previous,N表示Next. 即上一个移动的人有必胜策略的局面是P-position,“先手必败”或“后手必胜”,现…
ICG ICG(Impartial Combinatorial Games)游戏是组合游戏(Combinatorial Games)的一类 满足如下性质: ①有两名玩家 ②两名玩家轮流操作,在一个有限集合内任选一个进行操作,改变游戏当前局面 ③一个局面的合法操作,只取决于游戏局面本身且固定存在,与玩家次序或者任何其它因素无关 ④无法操作者,即操作集合为空,输掉游戏,另一方获胜 Nim游戏 Nim游戏是经典的ICG游戏,也是组合游戏的一个重要模型,非常的经典 对于n堆石子,两名玩家轮流取走其中一堆…