机器人学习操纵综述:挑战,表示形式和算法 1.介绍 因此,研究人员专注于机器人应如何学习操纵周围世界的问题. 这项研究的范围很广,从学习个人操作技巧到人类演示,再到学习适用于高级计划的操作任务的抽象描述,再到通过与对象交互来发现对象的功能,以及介于两者之间的许多目标. 我们自己的工作中的一些示例如图2所示. 我们在本文中的目标是双重的. 首先,我们描述了机器人操纵学习问题的形式化问题,该问题将现有研究综合到一个统一的框架中. 第二,我们旨在描述迄今为止在机器人学习中进行的研究的代表性子集. 通过…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 解决异构网络上的节点嵌入问题. 论文中指出了异构网络嵌入的两个关键问题: 在异构网络中,如何定义和建模节点邻域的概念? 如何优化嵌入模型,使得其能够有效的保留多种类型的节点和边的结构和语义信息. (2) 主要贡献 Contribution 1: 定义了异构网络表示学…
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现有的基于GAN的方法大多都是先假设服从一个高斯分布,然后再来学习节点嵌入(匹配节点嵌入向量服从这个假设的先验分布). 这可能存在两个问题: 一个问题是(由于真实数据是有很多噪声的,所以会为GAN模型学习的分布带来很多噪声)很难从节点向量表示中区分出噪声节点,因为所有节点都是服从…
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWalk的随机游走是完全无指导的随机采样,即随机游走不可控.本文从该问题出发,设计了一种有偏向的随机游走策略,使得随机游走可以在DFS和BFS两种极端搜索方式中取得平衡. (2) 主要贡献 Contribution: 本篇论文主要的创新点在于改进了随机游走的策略,定义了两个参数p和q,使得随机游走在BFS…
这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过^_^.我们的目的是理解文章思想,而不是为了翻译而纯粹翻译.翻译得不好,敬请包涵~ 欢迎同道中人QQ交流:1505543113 abstract: 随着采集技术( acquisition technology)的发展,许多综合性信息(comprehensive information)诸如depth…
前言引用 [1] End to End Learning for Self-Driving Cars从这里开始 [1.1] 这个是相关的博客:2016:DRL前沿之:End to End Learning for Self-Driving Cars [1.2] 其中提到的视频:GTC 2016: Self-Driving Car Demo, Roborace and Wrapping Up (part 11) 摘要 万事从摘要开始: We trained a convolutional neur…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…
论文源址:https://arxiv.org/abs/1709.04609 摘要 该文提出了基于深度学习的实例分割框架,主要分为三步,(1)训练一个基于ResNet-101的通用模型,用于分割图像中的前景和背景.(2)将通用模型进行微调成为一个实例分割模型,借助于视频第一帧的标签文件对不同个体进行实例分割.同时,从实例分割模型中得到每一个物体的像素级score map.每张score map代表物体类别的概率,并且只和视频第一帧的ground truth 计算.(3)提出空间传播网络用于增强前面…
Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  15:58:15  写在前面:为什么要看这个paper?这篇 paper 貌似是第一个将 meta-learning 应用到 visual tracking 领域的,取得了速度和精度较好的平衡. Introduction: 我们知道,tracking 中比较重要的就是 target object…
本文出自谷歌与普林斯顿大学研究人员之手并发表于计算机视觉顶会ECCV2018.本文首次提出了应用于主动双目立体视觉的深度学习解决方案,并引入了一种新的重构误差,采用自监督的方法来解决缺少ground truth数据的问题,本文所提供的方法在许多方面表现出了最好的结果 Abstract 本文首次提出了第一个主动双目视觉系统的深度学习解决方案 ActiveStereoNet.由于缺乏 ground truth,本文采用了完全自监督的方法,即使如此,本方法也产生了 1/30 亚像素精度的深度数据.它克…
摘要 多任务学习(Multi-Task Learning, MTL)是机器学习中的一种学习范式,其目的是利用包含在多个相关任务中的有用信息来帮助提高所有任务的泛化性能. 首先,我们将不同的MTL算法分为特征学习法.低秩方法.任务聚类方法.任务关系学习方法和分解方法,然后讨论每种方法的特点.为了进一步提高学习任务的性能,MTL可以与其他学习范式相结合,包括半监督学习.主动学习.非监督学习.强化学习.多视图学习和图形模型.当任务数量较大或数据维数较高时,批量MTL模型难以处理,本文对在线.并行和分布…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
 论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引言     1.探索人脸关于姿势.年龄.遮挡.光照.表情的不变性,通过特征工程人工构造feature,结合PCA.LDA.支持向量机等机器学习算法.     2.流程 人脸检测,返回人脸的bounding box 人脸对齐,用2d或3d的参考点,去对标人脸 人脸表达,embed 人脸匹配,匹配分数 二.人脸识…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的异构网络(HIN)嵌入方法本质上可以归结为两个步骤(1)正样本生成和负样本生成(2)在这些样本上训练模型优化目标函数以得到更合适的节点嵌入.目前主流的异构网络嵌入方法存在以下几个问题: Problem 1: 首先,这些算法一般从原始网络中随机选择节点与中心节点组合生成正样本或者负样本,即,…
<Learning to warm up cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shifting Networks>论文阅读 (i)问题背景: 工业界的推荐系统/广告系统现在都会用embedding技术生成物品/用户的向量.通俗点讲就是build一个向量嵌入层,把带有原始特征的输入向量转换成一个低维度的dense向量表示.推荐系统的模型一般有向量嵌入层和深度模型层两部分组成,向量嵌入层的…
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本…
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
[论文标题]A review on deep learning for recommender systems: challenges and remedies  (Artificial Intelligence Review,201906) [论文作者]Zeynep Batmaz 1 · Ali Yurekli 1 · Alper Bilge 1 · Cihan Kaleli 1 [论文链接]Paper(37-pages // Single column) ==================…
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science literature The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical anal…
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本文提出了一个新的超级学*框架,用于将三维点云过度分割为超点.本文将此问题转化为学*三维点的局部几何和辐射测量的深度嵌入,从而使物体边界呈现高对比度.嵌入计算使用轻量级神经网络在点的局部邻域上操作.最后,本文将点云过分集描述为一个与学*嵌入相关的图划分问题.这种新方法允许本文在密集的室内数据集(S3D…
1.难点-如何实现高效的通信 我们考虑下列的多任务优化问题: \[ \underset{\textbf{W}}{\min} \sum_{t=1}^{T} [\frac{1}{m_t}\sum_{i=1}^{m_t}L(y_{ti}, \langle \bm{w}_t, \bm{x}_{ti} \rangle)]+\lambda \text{pen}(\textbf{W}) \tag{1} \] 这里\(\text{pen}(\mathbf{W})\)是一个用于增强group sparse的正则项…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm for Deep Belief Nets.这篇论文一开始读起来是相当费劲的,学习了好几天才了解了相关的背景,慢慢的思路也开始清晰起来.DBN算法就是Wake-Sleep算法+RBM,但是论文对Wake-Sleep算法解释特别少.可能还要学习Wake-Sleep和RBM相关的的知识才能慢慢理解,今天…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…