词嵌入之FastText】的更多相关文章

什么是FastText FastText是Facebook于2016年开源的一个词向量计算和文本分类工具,它提出了子词嵌入的方法,试图在词嵌入向量中引入构词信息.一般情况下,使用fastText进行文本分类的同时也会产生词的embedding,即embedding是fastText分类的产物. FastText流程 FastText的架构图为: 分为输入层.隐含层.输出层,下面分别介绍这三层: 输入层 输入层包含三类特征: 全词特征,也就是每个词的完整词嵌入向量: 字符n-gram特征,例如对于…
在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一章中总结的类似,当然由于入门较晚没有CIPS2016里面说法权威,于是把CIPS2016中的内容,做一个摘录. CIPS2016 中文信息处理报告<第五章 语言表示与深度学习研究进展.现状及趋势>第三节 技术方法和研究现状中有一些关于语言表示模型划分的内容P33-P35,其中: 语言表示方法大体上…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…
词嵌入进阶 在"Word2Vec的实现"一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词.虽然 Word2Vec 已经能够成功地将离散的单词转换为连续的词向量,并能一定程度上地保存词与词之间的近似关系,但 Word2Vec 模型仍不是完美的,它还可以被进一步地改进: 子词嵌入(subword embedding):FastText 以固定大小的 n-gram 形式将单词更细致地表示为了子词的集合,而 BPE (byte pair…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…
1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法判断了,因为比较不常见. 此时使用 词嵌入,是一个训练好的模型,能够表示说,oragne和durian是类似的词,farmer和cultivator是同义词. 词向量需要在大量数据上进行训练,此时又谈到了迁移学习. 首先从大的语料库中学习词嵌入,然后将模型运用到小的数据集上,或许还可以从小数据集上更…
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域常使用在 ImageNet 上预训练的模型,它们可以进一步用于目标检测.语义分割等不同的 CV 任务.而在自然语言处理领域中,我们通常只会使用预训练词嵌入向量编码词汇间的关系,因此也就没有一个能用于整体模型的预训练方法.Sebastian Ruder 表示语言模型有作为整体预训练模型的潜质,它能由浅…
1. one-hot编码 # 字符集的one-hot编码 import string samples = ['zzh is a pig','he loves himself very much','pig pig han'] characters = string.printable token_index = dict(zip(range(1,len(characters)+1),characters)) max_length =20 results = np.zeros((len(sampl…
1 词汇表征(Word representation) 用one-hot表示单词的一个缺点就是它把每个词孤立起来,这使得算法对词语的相关性泛化不强. 可以使用词嵌入(word embedding)来解决这个问题,对于每个词,有潜在的比如300个特征,每个特征给个值,以此来表示每个词. 最终学到的词嵌入的特征不是那么好理解的,有些特征可能是几种常见特征的组合,总之可能是各种各样潜在的不知名特征. 最终学到的300维特征,如果用t-SNE映射到2维,相关性较强的词会聚在一起,相近的词语学到的特征会相…
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.10词嵌入除偏 Debiasing word embeddings Bolukbasi T, Chang K W, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings[J]. 2016. 机器学习和人工智能算法正渐渐被信任用以辅助或是制定极其重要的决策,所以要确保人工智能系统不受…