题目大意:给你一个有$n$个盘子的汉诺塔状态$S$,问有多少种不同的操作方法,使得可以在$m$步以内到达状态$T$.$n,m\leqslant100$ 题解:首先可以知道的是,一个状态最多可以转移到其他的$3$个状态,然后发现若$m\leqslant100$的话,每个柱子最多移动$7$个盘子,所以最多状态只有$3^{21}$次,这个数可能有点大,但是通过更严密的分析的话,最后状态数只有$10^5$级别,可以通过记忆化搜索通过. 卡点:妈啊,我怎么又把柱子上的顺序弄反了 C++ Code: #in…