caffe的输入】的更多相关文章

今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数. 可以查看常用模型,比如lenet 手写体,Alex imagenet 模型, 每一层输出feature map 个数 就是该层卷积核的个数. 1. 一通道单个卷积核卷积过程 2. 一通道 多个卷积核卷积过程 一个卷积核得到的特征提取是不充分的,我们可以添加…
决定将caffe分为几个部分进行总结,首先是第一部分,输入数据以及输入层. 首先从输入数据对BP的影响开始介绍. sgd的随机性 由于是sgd,因此样本一定要shuffle.BP中说到,样本选择遵循俩个原则:1.shuffle,让样本囊括所有类,2. 使得误差大的样本多出现,而误差小的少出现. 首先说一说第一个: 随机性,这个在caffe中都是怎么体现的呢?先说说caffe中的输入格式吧,leveldb, image原始数据,hdf5,lmdb.其中对应的类有data_layer, image_…
在向一个caffe模型传递输入数据的时候,要注意以下两点: 1. opencv中Mat数据在内存中的存放方式是按行存储,matlab中图像在内存中的存放方式是按列存储. 2. opencv中Mat数据的默认通道顺序是BGR,matlab中图像默认通道顺序是RGB.…
整体思路: 阅读caffe数据输入层各个类之间的继承关系,确定当前类需要继承的父类以及所需参数的设置. 编写zzq_data.cpp 在layer_factory.cpp中完成注册: 在caffe.proto中声明参数类型; 编译. 继承关系: 继承自基类的成员变量: protected: Blob<Dtype> prefetch_data_; Blob<Dtype> prefetch_label_; Blob<Dtype> transformed_data_; 用于保…
Caffe学习笔记(三):Caffe数据是如何输入和输出的? Caffe中的数据流以Blobs进行传输,在<Caffe学习笔记(一):Caffe架构及其模型解析>中已经对Blobs进行了简单的介绍.下面对caffe数据是如何输入和输出做更加详细的分析. 1.输入/输出之Blobs caffe使用blobs结构来存储.交换并处理网络中正向和反向迭代时的数据和导数信息,blob是caffe的标准数组结构,是caffe中处理和传递实际数据的数据封装包,它提供了一个统一的内存接口,从数学意义上说,bl…
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/caffe.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <iosf…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5946041.html 参考网址: http://caffe.berkeleyvision.org/tutorial/interfaces.html http://www.cnblogs.com/denny402/p/5076285.html 1. 如果直接训练时,test.sh中内容如下: ./build/tools/caffe train --solver=examples/XXX/lenet_s…
近期在用caffe玩一些数据集,这些数据集是从淘宝爬下来的图片.主要是想研究一下对女性衣服的分类. 以下是一些详细的操作流程,这里总结一下. 1 爬取数据.写爬虫从淘宝爬取自己须要的数据. 2 数据预处理.将图片从jpg,png格式转为leveldb格式.由于caffe的输入层datalayer是从leveldb读取的.这一步自己基于caffe写了个工具实现转换. 转换命令样例: ./convert_imagedata.bin /home/linger/imdata/skirt_train/ /…
参考博客: https://blog.csdn.net/muyouhang/article/details/54773265 https://blog.csdn.net/hhh0209/article/details/79830988 新建caffe的属性表,caffe_gpu_x64_release.props 将NugetPackages,caffe,CUDA中的头文件加进去 属性-C/C++-附加包含目录: D:\caffe20190311\NugetPackages\OpenCV.2.4…
官网:https://developer.nvidia.com/tensorrt 作用:NVIDIA TensorRT™ is a high-performance deep learning inference optimizer and runtime that delivers low latency, high-throughput inference for deep learning applications. TensorRT can be used to rapidly opti…