LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_j-s_j+h_j^2\),横坐标不单调可以\(CDQ\)分治或\(Splay\).具体见这里. 然后差不多就是个模板了. 注意算斜率乘1.0啊mmp. //645ms 8.14MB #include <cstdio> #include <cctype> #include <cs…
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j-dep_k}<p_i$ $p_i$是单调的,于是可以单调队列,当遍历完一个子树的时候,必须复原单调队列到进入这棵子树前的样子,这个用可持久化线段树维护可持久化数组显然可做... 当然有更聪明的方法. 单调队列队头出去的时候实际上队列信息不会被覆盖,于是恢复左端点只要记录进入当前点前的左端点即可.…
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择什么都不干,\(f_i=f_{i-1}\):也可以从之前的某一天\(j\)花\(f_j\)的钱买金券,在第\(i\)天全卖掉.用第\(j\)天的信息算一下买了多少\(A,B\),就可以得到第\(i\)天卖了多少钱. 所以有\(f_i=\max\{f_{i-1},\ A_i\frac{f_jk_j}{…
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Status][Discuss] Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金…
BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM)的经理,公司使用更加先进的机械设备生产先进的机器.原来的那一台生产机器已经坏了,所以你要去为公司买一台新的生产机器.你的任务是在转型期内尽可能得到更大的收益.在这段时间内,你要买卖机器,并且当机器被ACM公司拥有的时候,操控这些机器以获取利润.因为空间的限制,ACM公司在任何时候都只能最多拥有一台机…
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(sum[i-1]-sum[j])\] \[f[i]=f[j]+h[i]^2+h[j]^2-2*h[i]*h[j]+sum[i-1]-sum[j]\] \[sum[j]-f[j]-h[j]^2=(-2*h[j])*h[i]+sum[i-1]+h[i]^2-f[i]\] \[f[j]+h[j]^2-sum[…
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 题目描述 有 \(N\) 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变.机器会把这 \(N\) 个任务分成若干批,每一批包含连续的若干个任务.从时刻 \(0\) 开始,任务被分批加工,执行第 \(i\) 个任务所需的时间是 \(T_i\).另外,在每批任务开始前,机器需要 \(S\)…
首先对于这个题目. qwq 存在一个性质就是,最终的答案只跟你的分割的位置有关,而和顺序无关. 举一个小栗子 \(a\ b\ c\) 将这个东西分成两块. 如果我们先分割\(ab\)之间的话,\(ans = a*(b+c) + b*c\) 如果先分割\(bc\)之间的话,\(ans=c*(a+b)+a*b\) 答案是一样的.(也可以理解成如果位置,两数相乘的次数是一定的) 那么得到这个结论之后 也就不难得出\(dp\)柿子了 \[dp[i][p]=max(dp[j][p-1]+(sum[i] +…
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = max(f_{i - 1}, A_i \frac{f_j R_j}{A_j R_j + B_j} + B_i \frac{f_j}{A_j R_j + B_j})\) 变形一下: \[\frac{f_i}{B_i} - \frac{f_j}{A_j R_j + B_j} = \frac{A_i}{B…
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最优解,得到的是一条直线,斜率已知: 然后找到最接近这个最优斜率的点作为答案: 同时发现斜率单调递增,所以可以用单调队列: 代码是惊人地短呢: 还有一个问题,就是下面这篇代码中注释掉的那句会WA,可是我觉得它不过是把下面一句展开了而已啊? 代码如下: #include<iostream> #incl…