莫烦tensorflow(9)-Save&Restore】的更多相关文章

import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape when restore# W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='Weights')# b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases') # init = tf…
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data',one_hot=True) def compute_accuracy(v_xs,v_ys): global prediction y_pre = sess.run(prediction,feed_dict…
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data',one_hot=True) def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(t…
import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope('layer'): with tf.name_sco…
import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) W…
import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) output = tf.multiply(input1,input2) with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[7.],input2:[2.0]}))…
import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.add(state,one)update = tf.assign(state,new_value) init = tf.initialize_all_variables()#must have if define variable with tf.Session() as sess: sess.run(…
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3]])matrix2 = tf.constant([[2],[2]])protuct = tf.matmul(matrix1,matrix2) # sess = tf.Session()# result = sess.run(protuct) # print(result)# sess.close()…
import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32)y_data = x_data*0.1+0.3 ####create tensorflow structure start###Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))biases = tf.Variable(tf.zeros([…
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as np import tensorflow as tf # create dataset x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 2 + 5 ### create tensorflow structure St…
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1 + 0.3 #先创建我们的线性函数目标 #搭建模型 Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Varia…
  一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #添加一个神经层,定义添加神经层的函数 def add_layer(inputs, in_size, out_size, activation_function = None): Weights =…
稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记. 还有 google 在 udacity 上的 CNN 教程. CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器: 如果想要分成十类的话,那么就会有0到9这十个位置,这个数据属于哪一类就在哪个位置上是1,而在其它位置上为零. 在 RGB 这个层,每一次把一块核心抽出来,然后厚度…
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 从datasets中导入iris数据,包含150条样本,每条样本4个feature iris_data = datasets.load_i…
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # torch.manual_seed() # reproducible # Hyper Parameters EPOCH = # train the tra…
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() # fake data x = torch.unsqueeze(torch.linspace(-,,),dim=) y = x.pow() + 0.2 * torch.rand(x.size()) x, y = Variable(x,requires_grad=False), Variable(y…
先看如下代码 public class SaveRestoreActivity extends Activity { @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(new SaveRestoreView(this)); } } public class SaveRestoreView extends View { publ…
滴:转载引用请注明哦[握爪] https://www.cnblogs.com/zyrb/p/9700343.html 莫烦教程是一个免费的机器学习(不限于)的学习教程,幽默风俗的语言让我们这些刚刚起步的小白们感到Friendly~o(* ̄︶ ̄*)o.为了巩固自己的记忆,也小小の贡献于他人,将莫烦教程进行整理.难免于有错误恳请批评指正,也希望自己始终能愉悦的学习!PS:大多数为整理文本,少部分添加自己的理解. Artificial Neural Nets VS Neural Nets ? 二三十年…
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt # 超参数 LR = 0.01 BATCH_SIZE = EPOCH = # 生成假数据 # torch.unsqueeze() 的作用是将一维变二维,torc…
使用tensorflow中的save和restore可以对模型进行保存和恢复 import tensorflow as tf v1 = tf.Variable(tf.random_normal([1,2]), name="v1") v2 = tf.Variable(tf.random_normal([2,3]), name="v2") init_op = tf.global_variables_initializer() saver = tf.train.Saver…
TensorFlow 模型保存/载入 我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦.由于TensorFlow 的版本一直在更新, 保存模型的方法也发生了改变,在python 环境,和在C++ 环境(移…
一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.AdagradOptimizer tf.train.MomentumOptimizer:动量梯度下降算法 tf.train.AdamOptimizer:自适应矩估计优化算法 tf.train.RMSPropOptimizer tf.train.AdagradDAOptimizer tf.train.FtrlO…
Tensorflow 简介 1.1 科普: 人工神经网络 VS 生物神经网络 1.2 什么是神经网络 (Neural Network) 1.3 神经网络 梯度下降 1.4 科普: 神经网络的黑盒不黑 1.5 为什么选 Tensorflow? 1.6 Tensorflow 安装 1.7 神经网络在干嘛 Tensorflow 基础构架 2.1 处理结构 2.2 例子2 2.3 Session 会话控制 2.4 Variable 变量 2.5 Placeholder 传入值 2.6 什么是激励函数 (…
x = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) w = tf.Variable(tf.zeros([1, 1], dtype=tf.float32)) b = tf.Variable(tf.ones([1, 1], dtype=tf.float32)) y_hat = tf.add(b, tf.matmul(x, w)) ...more setup for optimization and what not... sav…
以下分析基于 xen4.2.3, 虚拟机都是hvm模式 使用libxl库有两种方式启动一个虚拟机,一种是 xl create xx.conf , 这种方式从一个配置文件开始启动一个虚拟机,速度相对较慢.另一种是xl restore checkpointfile , 这种从一个checkpoint文件启动(恢复)虚拟机,速度非常快. checkpointfile 可以认为是一个虚拟机快照,保存了虚拟机某一时刻的内存和设备状态,这里的‘某一时刻’其实就是执行保存快照  xl save domainn…
一.keras的backend设置 有两种方式: 1.修改JSON配置文件 修改~/.keras/keras.json文件内容为: { "iamge_dim_ordering":"tf", "epsilon":1e-07, "floatx":"float32", "backend":"tensorflow" } 官方文档解释: iamge_data_format:字符…
1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs data = [1, 2, -2, -1] #array tensor = torch.FloatTensor(data) #32bit 传入普通数组 np.abs(data); torch.abs(tensor); #矩阵相乘 data.dot(data) #但是要先转换为numpy的data data…
# View more python tutorials on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # Youku video tutorial: http://i.youku.com/pythontutorial """ Please note, this code is only…
keras的backend包括tensorflow和theano,tensorflow只能在macos和linux上运行,theano可以在windows,macos及linux上运行 1. 使用配置文件配置keras的backend vim ~/.keras/keras.json 内容如下: { "epsilon": 1e-07, "floatx": "float32", "image_data_format": "…
1. 为何保存神经网络 保存神经网络指的是保存神经网络的权重W及偏置b,权重W,和偏置b本身是一个列表,将这两个列表的值写到列表或者字典的数据结构中,使用pickle的数据结构将列表或者字典写入到文件中,保存神经网络只须保存权重W和偏置b,神经网络的结构下次再次定义为一样的,只需从文件中加载权重W和偏置b参数即可,无需重新训练神经网络 2. 代码实现: from __future__ import print_function import numpy as np import theano i…