最近在看论文的时候看到论文中使用isomap算法把3D的人脸project到一个2D的image上.提到降维,我的第一反应就是PCA,然而PCA是典型的线性降维,无法较好的对非线性结构降维.ISOMAP是‘流形学习’中的一个经典算法,流形学习贡献了很多降维算法,其中一些与很多机器学习算法也有结合,先粗糙的介绍一下’流形学习‘. 流形学习 流形学习应该算是个大课题了,它的基本思想就是在高维空间中发现低维结构.比如这个图: 这些点都处于一个三维空间里,但我们人一看就知道它像一块卷起来的布,图中圈出来…
参见:https://blog.csdn.net/Dark_Scope/article/details/53229427…
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提到了,特征选择的目的是通过降维来降低算法的计算成本……这些语言都很正常地被我用来使用,直到有一天,一个小伙伴问了我,”维度“到底是什么? 对于数组和Series来说,维度就是功能shape返回的结果,shape中返回了几个数字,就是几维.索引以外的数据,不分行列的叫一维(此时shape返回唯一的维度…
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或者有一些特征带有的信息和其他一些特征是重复的(比如一些特征可能会线性相关).我们希望能够找出一种办法来帮助我们衡量特征上所带的信息量,让我们在降维的过程中,能够即减少特征的数量,又保留大部分有效信息——将那些带有重复信息的特征合并,并删除那些带无效信息的特征等等——逐渐创造出能够代表原特征矩阵大部分…
<机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习).在本文中,我们关注其中一个比较简单的聚类算法:k-means算法. k…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier as RFC from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import pandas as pd import numpy as np 2.…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
重要参数n_components n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,一般输入[0, min(X.shape)]范围中的整数.一说到K,大家可能都会想到,类似于KNN中的K和随机森林中的n_estimators,这是一个需要我们人为去确认的超参数,并且我们设定的数字会影响到模型的表现. 如果留下的特征太多,就达不到降维的效果,如果留下的特征太少,那新特征向量可能无法容纳原始数据集中的大部分信息,因此,n_component…
到现在,我们已经完成了对PCA的讲解.我们讲解了重要参数参数n_components,svd_solver,random_state,讲解了三个重要属性:components_, explained_variance_以及explained_variance_ratio_,无数次用到了接口fit,transform,fit_transform,还讲解了与众不同的重要接口inverse_transform.所有的这些内容都可以被总结在这张图中:…