NumPy 基础用法】的更多相关文章

NumPy 是高性能科学计算和数据分析的基础包. 它是 pandas 等其他各种工具的基础. 主要功能: ndarray 一个多维数组结构, 高效且节省空间 无需循环对整组数据进行快速运算的数学函数 线性代数, 随机数生成和傅里叶变换功能 ndarry 多维数组 创建ndarry: np.array(array_like) 数组与列表的区别: 数组对象类元素类型必须相同 数组大小不可修改 ndarry 常用属性 T: 数组的转置 size: 数组元素个数 ndim: 数组的维数 shape: 数…
numpy get started 导入numpy库,并查看numpy版本 import numpy as np np.__version__ '1.14.0' 一.创建ndarray 1. 使用np.array()由python list创建 参数为列表: [1, 4, 2, 5, 3] 注意: numpy默认ndarray的所有元素的类型是相同的 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int data = [1, 2, 3] nd = np.arr…
Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入参数可以使一个整数表示维度,也可以是一个矩阵.这么说你可能不太理解,我们还是用各种例子来说明他的用法: 一维矩阵[1]返回值为(1L,) 二维矩阵,返回两个值 一个单独的数字,返回值为空 我们还可以将shape作为矩阵的方法来调用,下面先创建了一个单位矩阵e 我们可以快速读取e的形状 假如我们只想读…
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
  周末码一文,明天见矩阵- 其实Numpy之类的单讲特别没意思,但不稍微说下后面说实际应用又不行,所以大家就练练手吧 代码裤子: https://github.com/lotapp/BaseCode 在线编程: https://mybinder.org/v2/gh/lotapp/BaseCode/master 在线地址: http://github.lesschina.com/python/ai/numpy 1.数组定义.常见属性 ¶ 引入一下 Numpy模块, Numpy的数组使用可以查看一…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb python与numpy基础   寒小阳(2016年6月)   Python介绍   如果你问我没有编程基础,想学习一门语言,我一定会首推给你Python类似伪代码的书写方式,让你能够集中精力去解决问题,而不是花费大量的时间在开发和debug上同时得益于Numpy/Scipy这样的科学计算库,使得…
一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去安装数据分析包(比如numpy,pandas...) 第二种方式: 下载anaconda软件 优点:包含了数据分析的基础包大概200个左右的科学运算包 jupyter notebook一些快捷键操作: 1. 运行当前代码并选中下一个单元格 shift+enter 2. 运行当前的单元格 crtl +…
随书练习,第四章  NumPy基础:数组和矢量运算 # coding: utf-8 # In[1]: # 加注释的三个方法1.用一对"""括起来要注释的代码块. # 2.用一对'''括起来要注释的代码块. # 3.选中要注释的代码,按下ctrl+/注释. # from numpy import * import numpy as np # In[2]: data=[[0.9526,-0.246,-0.8856], [0.5639,0.2379,0.9104]] # In[3]…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…