LDA总结 (一) 共轭分布】的更多相关文章

今天开始,复习一下 LDA ,记录一些 LDA 的关键步骤,为写好论文做铺垫.第一节的主题是共轭分布,回忆贝叶斯公式: \[p(\theta|X) = \frac{p(\theta) \cdot p(X|\theta)  }{p(X)} \Leftrightarrow \mathbf{ posterior = \frac{prior \cdot likelihood}{evidence}}\] 简单来说,如果先验分布 $p(\theta)$ 和似然函数 $p(X|\theta)$ 可以使得先验…
---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯统计理论中,如果某个随机变量Θ的后验概率 p(θ|x)和他的先验概率p(θ)属于同一个分布簇的,那么称p(θ|x)和p(θ)为共轭分布,同时,也称p(θ)为似然函数p(x|θ)的共轭先验.简言之,共轭就是我俩天生一对.我们后面会看到,多项分布的先验概率分布和其后验概率分布就是共轭的. ok,下面我们…
1. 伯努利分布与二项分布 伯努利分布:Bern(x|μ)=μx(1−μ)1−x,随机变量 x 取值为 0,1,μ 表示取值为 1 的概率: 二项分布:Bin(m|N,μ)=(Nm)μm(1−μ)N−m 2. Beta 分布 Beta(μ|a,b) 是对 μ 进行建模: Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1 3. 共轭分布 以 Beta(μ|a,b) 分布为参数 μ 的先验,二项分布为似然函数,则后验概率(poster): p(μ|m,ℓ,a,b)∝μm+…
英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html 这是一个使用NMF和LDA对一个语料集进行话题抽取的例子. 输入分别是是tf-idf矩阵(NMF)和tf矩阵(LDA). 输出是一系列的话题,每个话题由一系列的词组成. 默认的参数(n_samples/n_features/n_topics)会使这个例子运行数十秒. 你可以尝试修改问题的规模,但是要注…
本文参考自:https://www.zhihu.com/question/21692336/answer/19387415   方法一: alpha 是 选择为 50/ k, 其中k是你选择的topic数,beta一般选为0.01吧,,这都是经验值,貌似效果比较好,收敛比较快一点..有一篇paper, lda-based document models for ad-hoc retrieval里面的实验系数设置有提到一下啊 方法二: alpha属于超参数,可以经验贝叶斯估计,在Blei原作里面是…
一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.(4)可以通过增加"主题"的方式,一定程度的解决上述问题:一个词可能被映射到多个主题中(一词多义),多个词可能被映射到某个主题的概率很高(多词一义) 2.pLSA模型 基于概率统计的pLSA模型(probabilistic latentsemanti…
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli trial)是只有两种可能结果的单次随机试验. 即:对于一个随机变量而言,P(X=1)=p以及P(X=0)=1-p.一般用抛硬币来举例.另外,此处也描述了伯努利过程: 一个伯努利过程(Bernoulli process)是由重复出现独立但是相同分布的伯努利试验组成,例如抛硬币十次. 维基百科中,伯努利过程…
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结.LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理. 在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),…
1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.此外,一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 人类是怎么生成文档的呢?LDA的这三位作者在原始论文中给了一个简单的例子.比如假设事先给定了这几个主题:Arts.Budgets.Childre…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,以下简称LDA).注意机器学习还有一个LDA,即线性判别分析,主要是用于降维和分类的,如果大家需要了解这个LDA的信息,参看之前写的线性判别分析LDA原理总结.文本…