首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BZOJ 2173 整数的lqp拆分
】的更多相关文章
BZOJ 2173: 整数的lqp拆分( dp )
靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f(n+1)... f(n)+f(n+1) = F(1)f(n-1)+F(2)f(n-2)+…+F(n)f(0) + F(1)f(n)+F(2)f(n-1)+…+F(n+1)f(0) = (F(0)+F(1))f(n)+(F(1)+F(2))f(n-1)+……+(F(n)+F(n+1))f(0) =…
BZOJ 2173 整数的lqp拆分
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2173 题意:给出输出n.设一种拆分为n=x1+x2+x3,那么这种拆分的价值为F(x1)*F(x2)*F(x3),F为斐波那契额数列.求所有拆分的价值之和. 思路: i64 G[N]; void init(){ G[0]=0; G[1]=1; int i; for(i=2;i<N;i++) G[i]=(G[i-1]*2+G[i-2])%mod;} int n; int…
打表\数学【bzoj2173】: 整数的lqp拆分
2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3-am>0,且a1+a2+a3+-+am=N的一个有序集合.通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的.然后lqp又想到了斐波那契数.定义F0=0,F1=1,Fn=F…
BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分
整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合.通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的. 然后lqp又想到了斐波那契数.定义F0=0,F1=1,Fn=Fn-1+Fn-2 (…
[BZOJ2173]整数的lqp拆分
[题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合.通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的. 然后lqp又想到了斐波那契数.定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),F…
整数的lqp拆分
题目大意 lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合.通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的. 然后lqp又想到了斐波那契数.定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),Fn就…
BZOJ2173 整数的lqp拆分(生成函数)
首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少.(虽然不用递推式也能显然地知道答案是2n-1). 类似地,lqp拆分有递推式f(n)=Σf(i)fib(n-i) (i=0~n-1).由乘法分配律就可以推出.特别地,f(0)=1. 又是一个卷积.是不是可以直接算了?啊要分治FFTn有1e6而且还不是NTT模数……肯定跑不过去啊.于是考虑生成函数. 设其生成函数为F(x),斐波拉契数列的生成函数为FIB(x).则F(x)=F(x)·FIB…
[国家集训队]整数的lqp拆分
我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^{i - 1} F_{a_j}$又有递推式$f(i) = \sum_{j = 1}^{i - 1}f(j) * F_{a_i - j}$ 那么推吧$$f(i) - f(i - 1)$$$$=\sum_{j = 1}^{i - 1}f(j) * F_{a_i - j} - \sum_{j = 1}^{…
洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]
传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1\) 由题意有 \[ dp_n=[n=0]+\sum_{i=1}^n dp_{n-i}f_i \] 按照套路,我们考虑它的生成函数\(A(x)\) \[ \begin{align*} A(x)&=\sum_n ([n=0]+\sum_{i=1}^n f_i dp_{n-i})x^n\\ &=1…
Luogu4451 [国家集训队]整数的lqp拆分
题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数据范围:$n\leq 10^6$ 首先不要被这个[国家集训队]给吓到了,其实很简单的. 首先考虑打表,....(逃 显然一眼就能想到卷积,设$F(x)$为$f$的生成函数.则 $$F(x)=\frac{x}{1-x-x^2}$$ $$Ans=\sum_{i=0}^nF^i(x)[x^n]$$ $$=…