第三周的课程pandas 分析数据 http://pandas.pydata.org import pandas as pd 常与numpy matplotlib 一块定义 d=pd.Series(range(20)) d.cumsum() 主要提供两个数据类型 Series DataFrame 基于上述数据类型的各类操作 很好的表示和封装 numpy         更关注数据的结构表达 数据之间构成的维度 pandas        基于numpy 实现的扩展库 建立其应用与索引之间的关系…
数据类型操作 如何改变Series/ DataFrame 对象 增加或重排:重新索引 删除:drop 重新索引 .reindex() reindex() 能够改变或重排Series和DataFrame索引 d.reindex(['c5','c4','v3','v2','c1']) 这样是改变index的顺序 d.reindex(column=['同比',...] 这样是改变column的顺序 .reincdex() 的参数 index,columns 新的行列顺序 fill_value 重新索引…
数据理解 基本统计 分布/累计统计 数据特征 数据挖掘 数据排序 操作索引的排序 .sort_index() 在指定轴上排序,默认升序 参数 axis=0 column ascending=True 升序 .sort_values() 参数同上 +by 对应的(axis)轴上某一个索引或者索引列表 (会相应的改变行) NAN空 统一放到排序末尾 基本统计函数 方法 说明 .sum() 和,默认0轴下同 .count() 计算非NAN的数量 .mean() .median() 计算均值,中位数 .…
一.Pandas库入门 1. Pandas库的介绍 http://pandas.pydata.org Pandas是Python第三方库,提供高性能易用数据类型和分析工具 import pandas as pdPandas基于NumPy实现,常与NumPy和Matplotlib一同使用 两个数据类型:Series, DataFrame 基于上述数据类型的各类操作:基本操作.运算操作.特征类操作.关联类操作 NumPy                        Pandas基础数据类型    …
入门学习马上结束辽. 1.Pandas库 import pandas as pd 两个数据类型:Series,DataFrame Series类型:数据+索引 自定义索引 b = pd.Series([9,8,7,6],index=['a','b','c','d']) b Out[3]: a 9 b 8 c 7 d 6 dtype: int64 从标量值创建 s = pd.Series(25,index=['a','b','c'])#index=不能省略 s Out[7]: a 25 b 25…
单元4:Matplotlib库入门 matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式 import matplotlib.pyplot as plt # -*- coding: utf-8 -*- """ Created on Fri Aug 2 10:03:57 2019 @author: ASUS """ import matplotlib.pyplot as plt plt.plot([0,2,4,6,8],…
Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series类似于Numpy中元素带标签的数组.其中,标签可以是数字或者字符串.一个dataframe是一个二维的表结构.Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签.你可以把它想象成一个series的字典项. Pandas常用知识 一.读取csv文件为dataf…
0 数据分析之前奏 课程主要内容:常用IDE:本课程主要使用:Anaconda Anaconda:一个集合,包括conda.某版本Python.一批第三方库等 -支持近800个第三方库 -适合科学计算领域 -包含多个主流工具 -开源免费 -跨平台 本身不是个ide 是将多个工具集成在一起的 conda -一个工具,用于包管理和环境管理 -包管理与pip类似,管理Python第三方库 -环境管理能够允许用户使用不同版本的Python,并能灵活切换 conda将工具.第三方库.Python版本.co…
大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事.但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析.爬虫.金融分析以及科学计算中. 作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大.实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码.当然,我…
知识回顾 在上一周的学习里,我学习了一些学习Python的基础知识下面先简短的回顾一些: 1Python的版本和和安装 Python的版本主要有2.x和3.x两个版本这两个版本在语法等方面有一定的区别.在安装的的时候需要注意.剩下的就是在官网选择适合自己操作系统版本的Python安装即可 2Python的内容编码 接下来就有关Python的内容编码的问题 .Python2.x默认是acsll编码.因此不支持中文.Python 3 则不存在这个问题 因此在Python2.x环境中需要在代码的开始加…