[AH2017/HNOI2017] 单旋 - Splay】的更多相关文章

Splay 暴力维护节点信息即可 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; int delta,t1,t2,t3,k[1000005],ch[1000005][2],fa[1000005],a[1000005],t[1000005],n,ind,root,opera[1…
题目:https://www.luogu.org/problemnew/show/P3721 手玩一下即可AC此题. 结论:插入x后,x要么会成为x的前驱的右儿子,要么成为x的后继的左儿子,这取决于它的前驱和后继的深度. 证明:首先可以证明的是,x的前驱和后继一定存在祖先与后代的关系,因为如果不存在此关系,它们的LCA一定和双方更接近. 然后这个结论画画图就比较显然了. 结论:单旋删除最小值后,它连向根节点的这条路径不发生变化,手玩即可证明,改变的只有它的儿子. 那么这个题就显然可以用LCT来维…
洛谷题面传送门 终于调出来这道题了,写篇题解( 首先碰到这样的题我们肯定要考虑每种操作会对树的形态产生怎样的影响: 插入操作:对于 BST 有一个性质是,当你插入一个节点时,其在 BST 上的父亲肯定是,你把 BST 中父亲按权值 sort 一遍排成一列后,在待插入的数的两侧的数对应的节点中,深度较大者.因此我们考虑用一个 set,将所有点的权值和编号压进去然后在里面 lower_bound 即可找出待插入点两侧的点. 单旋最小值:稍微画几个图即可发现,对于最小值代表的点 \(x\),如果 \(…
传送门 \(Spaly:\)??? 考虑在暴力模拟的基础上优化 如果要插入一个数,那么根据二叉查找树的性质,这个点一定插在他的前驱的右子树或者是后继的左子树,可以利用set维护当前树里面的数,方便查找前驱后继.不过具体要插到前驱处还是后继处呢?可以把前驱后继在树上的lca找出来,看一下新点如果小于lca的值,往前驱那边走;反之类似 然后后面操作都类似,把树中最值旋到根,可能会删除.通过手玩发现如果要旋最小值,那么最终树中,这个点的父亲的左儿子为这个点的右儿子,并且这个点的右儿子是原来的根,其他的…
题目 \(\rm splay\)水平太差,于是得手玩一下才能发现规律 首先插入一个数,其肯定会成为其前驱的右儿子或者是后继的左儿子,进一步手玩发现前驱的右儿子或者是后继的左儿子一定只有一个是空的,我们找到这个空位置插入就好了 于是我们需要一个\(\rm std::set\)来查找前驱后继,同时我们还需要维护每个点的左右儿子和父亲 继续手玩发现由于只有对最大值和最小值的操作,所以对\(\rm splay\)的结构影响很小,于是这个过程中也能维护每个节点的父亲的左右儿子 深度看起来不能用几个数组来维…
题意 题目链接 Sol 这题好毒瘤啊.. 首先要观察到几个性质: 将最小值旋转到根相当于把右子树变为祖先的左子树,然后将原来的根变为当前最小值 上述操作对深度的影响相当于右子树不变,其他的位置-1 然后就可以做了,把询问离线之后离散化一下,建一棵权值线段树表示每个值对应的深度 同时用set维护出已经加入的值 每次先找到后继,看一下有没有左孩子,如果有的话说明前驱一定没有右孩子. 注意随时更新信息 复杂度\(O(nlogn)\) #include<bits/stdc++.h> #define P…
4825: [Hnoi2017]单旋 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 667  Solved: 342[Submit][Status][Discuss] Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能.有一天,邪恶的“卡”带着 他的邪恶的“常数”来企图毁灭 H 国.“卡”给…
4825: [Hnoi2017]单旋 题意:有趣的spaly hnoi2017刚出来我就去做,当时这题作死用了ett,调了5节课没做出来然后发现好像直接用lct就行了然后弃掉了... md用lct不知道好写到哪里去了1h就写完了 原树的父亲孩子可以直接维护 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <set> usi…
[LG3721][HNOI2017]单旋 题面 洛谷 题解 20pts 直接模拟\(spaly\)的过程即可. 100pts 可以发现单旋最大.最小值到根,手玩是有显然规律的,发现只需要几次\(link,cut\),那么我们维护原树的父子关系以及一颗\(LCT\). 对于插入操作,由于插入的值肯定在前驱的右儿子或后继的左儿子,用\(set\)维护前驱后继即可. 建议自己独立找出规律,这里不再赘述,这题其实细节还是挺多的. 代码 #include <iostream> #include <…
4825: [Hnoi2017]单旋 链接 分析: 以后采取更保险的方式写代码!!!81行本来以为不特判也可以,然后就总是比答案大1,甚至出现负数,调啊调啊调啊调~~~ 只会旋转最大值和最小值,以最小值为例,画一下图可以看出,旋转后,深度分成三部分讨论,最小值的深度(变为1),最小值右子树的深度(不变),其他的点的深度(整体加1).所以线段树维护一下. 现在考虑如何插入一个点,可以知道一个点加入后一定是在前驱的右边,或者后继的左边.一个性质:前驱后继一定在splay上是一个是另一个的祖先的关系(…