一.SparkSQL的进化之路 1.0以前: Shark 1.1.x开始: SparkSQL(只是测试性的)  SQL 1.3.x: SparkSQL(正式版本)+Dataframe 1.5.x: SparkSQL 钨丝计划 1.6.x: SparkSQL+DataFrame+DataSet(测试版本) x: SparkSQL+DataFrame+DataSet(正式版本) SparkSQL:还有其他的优化 StructuredStreaming(DataSet) 二.认识SparkSQL 2.…
SparkSQL的进化之路 1.0以前: Shark 1.1.x开始: SparkSQL(只是测试性的) SQL 1.3.x: SparkSQL(正式版本)+Dataframe 1.5.x: SparkSQL 钨丝计划 1.6.x: SparkSQL+DataFrame+DataSet(测试版本) 1.x: SparkSQL+DataFrame+DataSet(正式版本) SparkSQL:还有其他的优化 StructuredStreaming(DataSet) 认识SparkSQL 什么是Sp…
一.概述 上一篇主要是介绍了spark启动的一些脚本,这篇主要分析一下Spark源码中提交任务脚本的处理逻辑,从spark-submit一步步深入进去看看任务提交的整体流程,首先看一下整体的流程概要图: 二.源码解读 2.1 spark-submit # -z是检查后面变量是否为空(空则真) shell可以在双引号之内引用变量,单引号不可 #这一步作用是检查SPARK_HOME变量是否为空,为空则执行then后面程序 #source命令: source filename作用在当前bash环境下读…
摘抄自:https://tech.meituan.com/spark-tuning-basic.html 一.概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常…
一. 数据准备 本文主要介绍Spark SQL的多表连接,需要预先准备测试数据.分别创建员工和部门的Datafame,并注册为临时视图,代码如下: val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() val empDF = spark.read.json("/usr/file/json/emp.json") empD…
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等 UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap 自定…
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等 UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap 自定…
概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的…
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优.但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发.资源参数以及数据倾斜,shuffle调优只能在整个Spark的性能调优中占到一小部分而已.因此大家务必把握住调优的基本…
一.启动脚本分析 独立部署模式下,主要由master和slaves组成,master可以利用zk实现高可用性,其driver,work,app等信息可以持久化到zk上:slaves由一台至多台主机构成.Driver通过向Master申请资源获取运行环境. 启动master和slaves主要是执行/usr/dahua/spark/sbin目录下的start-master.sh和start-slaves.sh,或者执行 start-all.sh,其中star-all.sh本质上就是调用start-m…