首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
SPSS正交设计的操作
】的更多相关文章
SPSS正交设计的操作
SPSS正交设计的操作 设要做二因素的正交设计,A因素有三个水平,B因素有两个水平.则选择Data-->Orthogonal Design-->generate,弹出的就是正交设计窗口: Factor name框:输入A:单击ADD钮:单击Define value钮:分别在Value列的头三行输入1.2和3,单击continue钮,这样就定义好了变量A. 按类似的方法定义好变量B的2个水平.单击OK,系统就输出一个新定义的数据集,前两个变量就是要分析的A和B,各个水平已经按正交设计的要求排列好…
SPSS超详细操作:分层回归(hierarchical multiple regression)
SPSS超详细操作:分层回归(hierarchical multiple regression) 1.问题与数据 最大携氧能力(maximal aerobic capacity, VO2max)是评价人体健康的关键指标,但因测量方法复杂,不易实现.某研究者拟通过一些方便.易得的指标建立受试者最大携氧能力的预测模型. 目前,该研究者已知受试者的年龄和性别与最大携氧能力有关,但这种关联强度并不足以进行回归模型的预测.因此,该研究者拟逐个增加体重(第3个变量)和心率(第4个变量)两个变量,并判断是否可…
SPSS常用基础操作(3)——对数据资料进行整理
在实际工作中,往往需要对取得的数据资料进行整理,使其满足特定的分析需求,下面介绍SPSS在资料整理方面的一些功能. 1.加权个案加权个案是指给不同的个案赋予不同的权重,以改变该个案在分析中的重要性.为什么要这么做呢?比如某些原始的数据资料每一行代表一个个案,在实际分析时,通常会整理成列联表或频数表,即增加一个频数变量,对重复取值的个案进行计数,这样整理之后数据内容会简化很多,但如果直接使用的话还不行,因为每种取值的个数不同,导致权重不同,因此需要加权处理.SPSS的加权个案在数据菜单的加权个案过…
SPSS常用基础操作(2)——连续变量离散化
首先说一下什么是离散化以及连续变量离散化的必要性. 离散化是把无限空间中无限的个体映射到有限的空间中去,通俗点讲就是把连续型数据切分为若干“段”,也称bin,离散化在数据分析中特别是数据挖掘中被普遍采用,主要原因有: 1.算法需要.有些数据挖掘算法不能直接使用连续变量,必须要离散化之后才能纳入计算,在数据挖掘软件中,表面上看可以直接使用连续变量进行计算,实际上在软件后台已经对其进行了离散化预处理. 2.降低异常数据的敏感度,使模型更加稳定.我们知道极端值和异常值会使模型参数拟合的不准确,误差过大…
SPSS常用基础操作(1)——变量分组
有时我们需要对数据资料按照某个规则进行归组,如 在上述资料中,想按照年龄进行分组,30岁以下为组1,30-40岁为组2,40岁以上为组3 有两种方法可以实现: 1.使用计算变量功能 <1>打开转换-计算变量菜单,定义组变量名group,并在数字表达式中赋值为1,点击确定,这样资料中新增了一个名为group的变量,并且值全部为1<2>打开转换-计算变量菜单,在数字表达式中赋值为2,点击左下方“如果”按钮,设置条件年龄>=30 & 年龄<=40,点击确定,之后看到g…
SPSS操作:轻松实现1:1倾向性评分匹配(PSM)
SPSS操作:轻松实现1:1倾向性评分匹配(PSM) 谈起临床研究,如何设立一个靠谱的对照,有时候成为整个研究成败的关键.对照设立的一个非常重要的原则就是可比性,简单说就是对照组除了研究因素外,其他的因素应该尽可能和试验组保持一致,这里就不得不提随机对照试验.众所周知,随机对照试验中研究对象是否接受干预是随机的,这就保证了组间其他混杂因素均衡可比. 但是有些时候并不能实现随机化,比如说观察性研究.这时候倾向性评分匹配(propensity score matching, PSM)可以有效降低混杂…
SPSS数据分析—相关分析
相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以. 相关系数有一些需要注意的地方: 1.两变量之间存在相关,仅意味着存在关联,并不意味着因果关系.2.相关系数不能进行加减乘除运算,没有单位,不同的相关系数不可比较3.相关系数大小容易受到数据取值区间大小和数据个数大小的影响.4.相关系数也需要进行检验确定其是否有统计学意义 相关系数的假设检验中H0:相关系数=0,变量间没…
备忘--简单比较SPSS、RapidMiner、KNIME以及Kettle四款数据分析工具
SPSS.RapidMiner.KNIME以及Kettle四款工具都可以用来进行数据分析,只是彼此有各自的侧重点和有劣势.它们都可以逐步的定义数据分析过程,也同样都可以对数据进行ETL处理.笔者从自己关心的角度简单对比以上四款数据分析工具. SPSS不用多说,一款成功的商业数据分析软件,涵盖了统计分析.数据挖掘分析等各种数据分析方法.界面简单易用,分析过程定义时非常直观方便.因为,没有源码,无从知道其过程的调度机制. RapidMiner一款出色的开源数据分析工具.有非常丰富的数据分析算法.过程…
spss如何选择需要的变量?
spss如何选择需要的变量? 今天一位网友问我,spss如何在许多字段(变量)中选择我需要的字段,而不显示其他的字段呢? 这个问题问的很好,在实际的数据分析或者挖掘的过程中,都需要用这个来找出对商业问题有用的字段,以便减少人为造成的误差: 在spss中如下操作即可: Step1 菜单Utilities-------define sets------进入define variable sets 对话框,从左侧所有变量中选择你想要分析的字段进入右侧变量框,在set names中为这些字段的集合命一个…
SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类
https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf-8&lm=0&od=0 SPSS 18.0由17个功能模组组成: Base System 基础程式 Advanced Models 高等统计模组(GEE/GLM/存活分析) Regression Models 进阶回归模组 Custom Tables 多变量表格 Forecasting 时间序…