题意 链接 Sol 势能分析. 除法是不能打标记的,所以只能暴力递归.这里我们加一个剪枝:如果区间内最大最小值的改变量都相同的话,就变成区间减. 这样复杂度是\((n + mlogn) logV\)的. 简单的证明一下:如果没有加的话,每个节点会被除至多log次, 总会除4nlogn次,每次区间加会恢复log个点的势能函数,这样总递归次数就是\(nlog^2n\). 下传标记的时候别忘了把min和max都更新一下 #include<bits/stdc++.h> #define Pair pai…
考虑到每次除法,然后加法,差距会变小,于是维护加法lazytag即可 #include <cstdio> #include <cmath> #define int long long int read() { int x = 0; bool f = 0; char c = getchar(); while (c < 48) f ^= (c == '-'), c = getchar(); while (c > 47) x = x * 10 + (c - 48), c =…
题目描述 从前有一个贸易市场,在一位执政官到来之前都是非常繁荣的,自从他来了之后,发布了一系列奇怪的政令,导致贸易市场的衰落. 有 \(n\) 个商贩,从\(0 \sim n - 1\) 编号,每个商贩的商品有一个价格\(a_i\),有两种政令: \(l, r, c\),对于\(i \in [l, r], a_i \leftarrow a_i + c\) \(l, r, d\),对于\(i \in [l, r], a_i \leftarrow \lfloor {a_i}/{d} \rfloor\…
题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之间,每次除的数在 $[2,10^9]$ 之间. 题解 线段树+均摊分析 和 [uoj#228]基础数据结构练习题 类似的均摊分析题. 对于原来的两个数 $a$ 和 $b$ ( $a>b$ ) ,原来的差是 $a-b$ ,都除以 $d$ 后的差是 $\frac{a-b}d$ ,相当于差也除了 $d$…
老师说,你们暴力求除法也整不了多少次就归一了,暴力就好了(应该只有log(n)次) 于是暴力啊暴力,结果我归天了. 好吧,在各种题解的摧残下,我终于出了一篇巨好看(chou lou)代码(很多结构体党嫌丑) 那么具体除法怎么实现就是关键了 对于单个点或者区间内的数完全相同的区间,可以做成区间减法 因为除法会使数变小,而相同的数减小的量是相同的, 那么怎么判断区间内的数是否完全相同呢? 可以维护一个区间最小与区间最大,如果一个区间内最小数等于最大数,那么显然这个区间内所有数相等 区间最小与区间最大…
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l r c 给 \([l,r]\) 区间内的值全部加上 \(c\). 2 l r d 给 \([l,r]\) 区间内的值全部除以 \(d\), 向下取整. 3 l r 求 \([l,r]\) 区间内的最小值. 4 l r 求 \([l,r]\) 区间内的值之和. \(n,q\le 1\times 10…
传送门:https://loj.ac/problem/6029 [题解] 考虑如果有一些近似连续的段 比如 2 2 2 3 3 3,考虑在除3意义下,变成0 0 0 1 1 1,相当于整体-2 又:区间增加很容易造成这种段,所以我们猜测可以暴力维护 用一棵线段树即可.(好像真的能暴力维护啊 我不知道怎么证明复杂度) # include <stdio.h> # include <string.h> # include <iostream> # include <al…
题解: 这两道题加上区间取min max应该算线段树几道比较不寻常的题目 其实也是挺好理解的 对于区间/d 显然在log次后就会等于0 而我们注意到如果区间中数都相等那么就可以一起除 也就是说每个区间需要log次除法能相等 而每一次加权操作会造成log个区间不相等 那么时间复杂度就是nlog^2的 并且应该实现出来常数会比较小 区间开根是同理的 区间取min有所不同,见 代码:…
点此看题面 大致题意: 维护序列,支持区间加法,区间除法(向下取整),区间求\(min\)和区间求和. 线段树维护区间除法 区间加法.区间求\(min\)和区间求和都是线段树基本操作,因此略过不提. 此题关键在于维护区间除法. 而这有一个复杂度玄学的做法,即将区间除法转化为区间减法. 可以考虑对于每个区间,记录下其最小值和最大值,若最小值和最大值做区间除法所需减去的数相等,则易证整个区间所需减去的数相等. 则我们可以将区间\([l,r]\)分成若干个区间,直至区间最小值与最大值相等即可. 代码…
题目 题意:四种操作,区间加法.区间除法(下取整).区间求最小值.区间求和. 第1.3.4个操作都是摆设,关键在于如何做区间除法. 很明显不能直接把区间的和做除法后向下取整,因为区间和可能会多凑出一个除数因子.例如$3,3$,对这两个数的区间除以2取整后变成$1,1$,但如果直接把它们的和6除以2取整后得到的和是3,很明显有误. 但是根据经验,带有区间除法操作的题目一般都会把数给你往小了压.再一看这题,两个修改操作中,区间加法的加数不大且可能是负数,而除数可高达$10^9$! 尤其是除法的大除数…