随机抽样 (numpy.random)】的更多相关文章

随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random randn(d0, d1, ..., dn) 返回一个样本,具有标准正态分布. Notes For rando…
NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1,..,dn)的n+1维数组,元素类型为浮点数,元素大小范围是[0,1),均匀分布,随机产生. 例:print(np.random.rand(2, 4, 3)) # 生成形状(2, 3, 4)的数组,元素范围[0,1) 输出: [[[0.08107628 0.04956067 0.83403251]…
先贴参考链接: https://stackoverflow.com/questions/21494489/what-does-numpy-random-seed0-do numpy.random.seed(num):如果使用相同的num,则每次生成的随机数都相同. 1.无num参数 代码: import numpy as np for i in range(5): np.random.seed() perm = np.random.permutation(10) print(perm) 结果:…
0. numpy.random中的shuffle和permutation numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不同,或者说有什么关系? 答: np.random.permutation与np.random.shuffle有两处不同: 如果传给permutation一个矩阵,它会返回一个洗牌后的矩阵副本:而shuffle只是对一个矩阵进行洗牌,无返回值. 如果传入一个整数,它会返回一个洗牌后的arange. 上…
# *_*coding:utf-8 *_* # athor:auto import numpy.random #rand(d0, d1, ..., dn)n维随机值 data0 = numpy.random.rand(3,2) print(data0) # [[ 0.32795061 0.57825984] # [ 0.29511226 0.64076698] # [ 0.3778223 0.23230085]] print('===========================') data…
1.numpy.random.shuffle(x) 参数:填入数组或列表. 返回值:无. 函数功能描述:对填入的数组或列表进行乱序处理,shape保持不变. 2.numpy.random.permutation(x) 参数:填入整型数据或数组.若填入正整数n,则将np.arange(n)乱序后返回:若填入数组,则将数组乱序后返回. 返回值:乱序数组. 函数功能描述:将数组乱序后输出.若填入的多维数组,则只对第一个维度进行乱序处理,其余维度不变.如填入二维数组,则只对行的顺序进行调整,每行内部元素…
1.numpy.random.rand(d0,d1,d2,...,dn) 参数:d0,d1,d2,...,dn 须是正整数,用来描述生成随机数组的维度.如(3,2)代表生成3行2列的随机数组. 返回值:维度为(d0,d11,d2,...,dn)的ndarray类数组,每个元素均为浮点型. 函数功能描述:生成一个给定形状的随机数组,随机数遵循均匀分布,分布范围为[0,1). 2.numpy.random.randn(d0,d1,d2,...,dn) 参数:d0,d1,d2,...,dn 须是正整数…
numpy.random.uniform均匀分布 2018年06月19日 23:28:03 徐小妹 阅读数:4238   numpy.random.uniform介绍: 1. 函数原型:  numpy.random.uniform(low,high,size) 功能:从一个均匀分布[low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high. 参数介绍:         low: 采样下界,float类型,默认值为0:    high: 采样上界,float类型,默认值为1…
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)之间. [code] import numpy as np arr1 = np.random.randn(2,4) print(arr1) print('*****************************…
使用 numpy.random.choice随机采样: 说明: numpy.random.choice(a, size=None, replace=True, p=None) 示例: >>> np.random.choice(5, 3) array([0, 3, 4]) >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) >>> np.random.choice(5,…