Matrix Power Series】的更多相关文章

Matrix Power Series   Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109)…
Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: n (n ≤ 30) , k (k ≤ 109) ,m (m < 104) 输入 输入三个正整数n,k,m 输出 输出矩阵S mod m 样例输入 2 2 4 0 1 1 1 样例输出 1 2 2 3 这道题不多说,可以得出加速矩阵(E为单位矩阵,也就是形为\(\begin{bmatrix}1&…
Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用数组了,照着别人的代码敲了一遍 [时间复杂度]O(logn) &代码: #include <cstdio> #include <bitset> #include <iostream> #include <set> #include <cmath&g…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted: 5105 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test cas…
矩阵的又一个新使用方法,构造矩阵进行高速幂. 比方拿 nyoj299 Matrix Power Series 来说 给出这样一个递推式: S = A + A2 + A3 + - + Ak. 让你求s.A是一个矩阵,而k很大. 怎么办呢? 推理发现:Fn = A + A*F(n-1) 然后我们能够构造矩阵: (Fn .1 ) =  (Fn-1 ,1) * (A.0. A,1) = (F1 , 1) * (A,0. A,1)^K-1 那么我们就能够用一个矩阵高速幂了. 以下是模板题目的代码: #in…
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test case. T…
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 28619   Accepted: 11646 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted: 6602 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted: 6724 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas…
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<=30)的矩阵,让你求 \(\sum\limits_{i=1}^{k}A^i\) 并将答案对取模p 输入格式: 有多组测试数据,其中第一行有3个正整数,为n,k(k<=\(10^9\)),p(p<=\(10^4\)) 后面有n行,每行n个数. 输出格式: 输出最后答案的矩阵. 输入输出样例 inpu…
poj 1575  Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据.接下来有n行,每行有n个数据,每一个数据的范围是[0,9].表示方阵A的内容. 一个矩阵高速幂的裸题. 题解: #…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted: 11143 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test ca…
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test case. The first line of input contains three po…
题目:Matrix Power Series 传送门:http://poj.org/problem?id=3233 分析: 方法一:引用Matrix67大佬的矩阵十题:这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:$ S(6)= A + A^2 + A^3 + A^4 + A^5 + A^6 =\underline{(A + A^2 + A^3)} + A^3*\underline{(A + A^2 + A^3)}.…
Matrix Power Series 给出矩阵A,求矩阵\(A+A^2+...+A^k\)各个元素\(mod\ yyb\)的值,\(n\leq 30,k\leq 10^9,yyb\leq 10^4\). 解 法一:分治 显然是数列题,故数列最浅显的减法是分治,寻找其中重复计算的部分,故可以 \[A+A^2+...+A^{k/2}+A^{k/2+1}+...+A^k=\] \[A+A^2+...+A^{k/2}+A^{k/2}(A+...+A^{k/2})+(k\&1)A^k=\] \[(A^{…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted: 7802 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas…
原题如下: Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 28044   Accepted: 11440 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one t…
[ 矩 阵 乘 法 ] M a t r i x P o w e r S e r i e s [矩阵乘法]Matrix Power Series [矩阵乘法]MatrixPowerSeries Description Given a n × n n × n n×n matrix A A A and a positive integer k k k, find the sum S = A + A 2 + A 3 + . . . + A k S = A + A^2 + A^3 + ... + A^k…
[题目链接] 点击打开链接 [算法] 要求 A^1 + A^2 + A^3 + ... + A^k 考虑通过二分来计算这个式子 : 令f(k) = A^1 + A^2 + A ^ 3 + ... + A^k 那么,当k为奇数时,f(k) = f(k-1) + A ^ k 当k为偶数时,f(k) = f(n/2) + A ^ (n/2) * f(n/2) 因此,可以通过二分 + 矩阵乘法快速幂的方式,在O(n^3log(n)^2)的时间内解决此题 [代码] #include <algorithm>…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
题意:求S(k) = A+A^2+...+A^k. 解法:二分即可. if(k为奇)  S(k) = S(k-1)+A^k else        S(k) = S(k/2)*(I+A^(k/2)) 代码: #include <iostream> #include <cmath> #include <cstdio> #include <cstdlib> #define SMod m using namespace std; int n,m,k; struct…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] 则有递推式B[K] = T*B[k-1],即有B[k] = T^k*B[0],令S[0] 为n*n的0矩阵. 矩阵快速幂求出即可····· 还可以使用两次分治的方法····自行百度···· 贴代码: #include<cstdio> #include<cstring> int n,k…
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2))+A^k若k为偶数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2)) 也可以这么二分(其实和前面的差不多):S(2n)=A+A^2+...+A^2n=(1+A^n)*(A+A^2+...+A^n)=(1+A^n)*S(n)S(2n+1…
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这道题两次二分,相当经典.首先我们知道,A^i能够二分求出. 然后我们须要对整个题目的数据规模k进行二分.比方,当k=6时,有:     A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)     应用这个式子后,规模…
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k<=10^9.这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模…
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - + A^k. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 10…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/problem?id=3233 我的思路是: 首先原矩阵保留着,然后需要扩大一倍 需要求1--->1的路径数 <= k的,ans = (路径数 = k的) +(路径数 < k)的 等于k的很容易求,就是e^k然后e[1][1]就是答案,那么小于k的,我们需要虚拟一个节点保留着 可以先看看这个http…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…