随机森林R语言预测工具】的更多相关文章

使用R语言预测产品销量 通过不同的广告投入,预测产品的销量.因为响应变量销量是一个连续的值,所以这个问题是一个回归问题.数据集共有200个观测值,每一组观测值对应一种市场情况. 数据特征 TV:对于一个给定市场的单一产品,用于电视上的广告费用(以千为单位) Radio:用于广告媒体上投资的广告费用 Newspaper:用于报纸媒体上的广告费用 响应 Sales:对应产品的销量 加载数据 > data <- read.csv("http://www-bcf.usc.edu/~garet…
直接上代码 在做特征工程的时候, 其实可以用算法来处理特征工程的, 比如缺失值填充之类的. 这里一段code_demo是搬运来的, 不过是真滴好用呢. # RandomForest - 强化, 对 new_user_class_level 进行 缺失值预测 from pyspark.mllib.regression import LabeledPoint # 1. 过滤出 new_user_class_level 非空的df 作为 训练集 train_data2 = user_profile_d…
预测流程 确定主题.指标.主体.精度.周期.用户.成本和数据七要素. 收集数据.内容划分.收集原则. 选择方法.主要方法有自相关分析.偏相关分析.频谱分析.趋势分析.聚类分析.关联分析.相关分析.互相关分析.典型相关分析.对应分析等. 分析规律.常见的规律有趋势性.周期性.波动性.相关性.相似性.项关联性.段关联性. 建立模型.特征构建.特征选择.算法选择(可理解性.性能.数据要求).构建模型(分割数据集).测试模型.模型优化.评估效果.发布模型. 分析方法 自相关分析,同一时间序列在不同时刻的…
2.1预测流程 从确定预测主题开始,一次进行数据收集.选择方法.分析规律.建立模型.评估效果直到发布模型. 2.2.1确定主题 (1)指标:表达的是数量特征,预测的结果也通常是通过指标的取值来体现. (2)主体:预测研究的对象. (3)精度:预测能够达到的准确水平. (4)周期:在预测工作开始前,需要明确预测结果的时间跨度,或叫做周期. (5)用户: (6)成本: (7)数据: 2.1.2收集数据 内容划分 收集原则 :全面覆盖.质量良好.周期一致.粒度(粒度可以理解为事物的层次)对称.持续生产…
本例使用forecast包中自带的数据集wineind,它表示从1980年1月到1994年8月, 由葡萄酒生产商销售的容量不到1升的澳大利亚酒的总量.数据示意如下: #观察曲线簇 len=1993-1980+1 data0=wineind[1:12*len] range0=range(data0)+c(-100,100) plot(1:12,1:12,ylim=range0,col='white',xlab="月份",ylab="销量") for(i in 1:le…
特征构建技术 特征变换,对原始的某个特征通过一定的规则或映射得到新特征的方法,主要方法包括概念分层.标准化.离散化.函数变换以及深入表达.特征变换主要由人工完成,属于比较基础的特征构建方法. 概念分层,缩减离散数据的方法,比如分段. 标准化,即无量纲处理.有线性标准化(极差标准化.z-score标准化[正态分布].小数定标标准化).非线性标准化(对数标准化.小数标准化[可能还会有什么指数标准化?]) 离散化(分箱法[按某规则存放在不同的箱中,课以按数量和区间分],熵离散法[没搞懂]),规则离散法…
使用基于Apache Spark的随机森林方法预测贷款风险   原文:Predicting Loan Credit Risk using Apache Spark Machine Learning Random Forests 作者:Carol McDonald,MapR解决方案架构师 翻译:KK4SBB 责编:周建丁(zhoujd@csdn.NET) 在本文中,我将向大家介绍如何使用Apache Spark的Spark.ml库中的随机森林算法来对银行信用贷款的风险做分类预测.Spark的spa…
在上一个博客中,我们构建了随机森林温度预测的基础模型,并且研究了特征重要性. 在这个博客中,我们将从两方面来研究数据对预测结果的影响 第一方面:特征不变,只增加样本的数据 第二方面:增加特征数,增加样本的数据 1.sns.pairplot 画出两个变量的关系图,用于研究变量之间的线性相关性,sns.pattle([color]) 用于设置调色板, 有点像scatter_matrix 2.MSE   round(abs(pred - test_y).mean(), 2)  研究预测值与真实值之差的…
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/linyi0604/MachineLearning import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.feature_extraction import DictVectoriz…
R 语言实战(第二版) part 4 高级方法 -------------第13章 广义线性模型------------------ #前面分析了线性模型中的回归和方差分析,前提都是假设因变量服从正态分布 #广义线性模型对非正态因变量的分析进行扩展:如类别型变量.计数型变量(非负有限值) #glm函数,对于类别型因变量用logistic回归,计数型因变量用泊松回归 #模型参数估计的推导依据的是最大似然估计(最大可能性估计),而非最小二乘法 #1.logistic回归 library(AER) d…