关于 KL 散度和变分推断的 ELBO】的更多相关文章

(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可能接近的分布(或者类似分布的表示) 预备知识 学习变分推断需要以下预备知识 多元分布: 边际化(Marginalization)是我们使用变分推断时最常使用的操作 KL散度: KL散度是变分目标函数的一部分.…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain). KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L…
EM算法 EM算法是含隐变量图模型的常用参数估计方法,通过迭代的方法来最大化边际似然. 带隐变量的贝叶斯网络 给定N 个训练样本D={x(n)},其对数似然函数为: 通过最大化整个训练集的对数边际似然L(D; θ),可以估计出最优的参数θ∗.然而计算边际似然函数时涉及p(x) 的推断问题,需要在对数函数的内部进行求和(或积分) 注意到,对数边际似然log p(x; θ) 可以分解为 其中DKL(q(z)∥p(z|x; θ))为分布q(z)和后验分布p(z|x; θ)的KL散度. 由于DKL(q(…
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F(f(x)) .对于f(x)我们是通过改变x来求出f(x)的极值,而在变分中这个x会被替换成一个函数y(x),我们通过改变x来改变y(x),最后使得F(y(x))求得极值. 变分:指的是泛函的变分.打个比方,从A点到B点有无数条路径,每一条路径都是一个函数吧,这无数条路径,每一条函数(路径)的长度都…
在这篇文章中,我们将探讨一种比较两个概率分布的方法,称为Kullback-Leibler散度(通常简称为KL散度).通常在概率和统计中,我们会用更简单的近似分布来代替观察到的数据或复杂的分布.KL散度帮助我们衡量在选择近似值时损失了多少信息. 让我们从一个问题开始我们的探索.假设我们是太空科学家,正在访问一个遥远的新行星,我们发现了一种咬人的蠕虫,我们想研究它.我们发现这些蠕虫有10颗牙齿,但由于它们不停地咀嚼,很多最后都掉了牙.在收集了许多样本后,我们得出了每条蠕虫牙齿数量的经验概率分布: 虽…
以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分布.我们可以用哈夫曼编码作为最佳编码方案编码这些事件,并将多次事件发生的情况信息以哈夫曼编码的形式传递出去. 有一个结论是:在一个数据分布p上,用p对应的最佳编码方案来传递信息,这样传递的信息的期望量.这个期望量也被称为这个数据分布p作为一个信息的信息熵,是一个信息的一种属性. 信息熵就是,在一个数…
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似然估计推导出 KL 散度而加强我们对量化分布间相似性的理解.最后我们简要讨论了信息熵在机器学习中的应用,包括通过互信息选择决策树的特征.通过交叉熵衡量分类问题的损失和贝叶斯学习等. 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.它最初被发明是用来研究在一个含有噪声的信道上…
KL散度(KL divergence) 全称:Kullback-Leibler Divergence. 用途:比较两个概率分布的接近程度.在统计应用中,我们经常需要用一个简单的,近似的概率分布 f * 来描述. 观察数据 D 或者另一个复杂的概率分布 f .这个时候,我们需要一个量来衡量我们选择的近似分布 f * 相比原分布 f 究竟损失了多少信息量,这就是KL散度起作用的地方. 熵(entropy) 想要考察信息量的损失,就要先确定一个描述信息量的量纲. 在信息论这门学科中,一个很重要的目标就…