一:数组的属性 每个数组都有它的属性,可分为:ndim(数组的维度),shape(数组每个维度的大小),size(数组的总大小),dtype(数组数据的类型) 二:数组索引 和python列表一样,Numpy的索引在一维数组中,也可以通过中括号重指定索引获取第i个值(从0开始) 如: x1 = [1,2,3,4,5,6,7,8] print(x1[0]) out: 1 比较有用的一个是,numpy支持负值索引,如print(x1[-1]) out:8 负值索引的时候是从-1开始的,-1表示倒数第…
Numpy的索引切片 索引 In [72]: arr = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]]) In [73]: arr Out[73]: array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) In [74]: arr.ndim Out[74]: 3 In [75]: arr.shape Out[75]: (2, 2, 3) In [76]: arr[0] #返回降低一个维度的数组…
1.一维数组的索引及切片 ar = np.arange(20) print(ar) print(ar[4]) print(ar[3:6]) print(ar[:4:2]) #索引到4 按2的步长 print('-----') 输出结果: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] 4 [3 4 5] [0 2] ----- 2. 二维数组的索引及切片 ar = np.arange(16).reshape(4,4) print(ar,…
NumPy学习(一) NumPy数组创建 NumPy数组属性 NumPy数学算术与算数运算 NumPy数组创建 NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型. 它描述相同类型的元素集合. 可以使用基于零的索引访问集合中的项目. ndarray中的每个元素在内存中使用相同大小的块. ndarray中的每个元素是数据类型对象的对象(称为 dtype). 从ndarray对象提取的任何元素(通过切片)由一个数组标量类型的 Python 对象表示. 它从任何暴露数组接口的对…
array,list,dataframe索引切片操作 2016年07月19日——智浪文档 list,一维,二维array,datafrme,loc.iloc.ix的简单探讨 Numpy数组的索引和切片介绍: 从最基础的list索引开始讲起,我们先上一段代码和结果: a = [0,1,2,3,4,5,6,7,8,9] a[:5:-1] #step < 0,所以start = 9 a[0:5:-1] #指定了start = 0 a[1::-1] #step < 0,所以stop = 0 输出: […
引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我…
(1-1)pytorch张量数据的索引与切片操作1.对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2个维度数据(不包括2):(2)a[:2,:1,:,:]:取第一个维度的前两个数据,取第2个维度的前1个数据,后两个维度全都取到:(3)a[:2,1:,:,:]:取第一个维度的前两个数据,取第2个维度的第1个索引到最后索引的数据(包含1),后两个维度全都取到:(4)a[:2,-3:]:负号表示第2个维…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…
数据类型整体分析 int :用于计算bool:True False 用户判断str:少量数据的存储 list:列表 储存大量数据 上亿数据[1,2,3,'zzy',[aa]] 元组:只读列表(1,23,'asdadas') dist:字典 键值对的形式储存,关系型{'name':'小王八','age':16}{'小王八':[12,3,'dsaa'],'二哥':[200,200]} 集合:求交集等{1,2,33,'adsf'} int bool str 数据转换 int: i =2 print(b…
1 内容总览 列表的初识 列表的索引切片 列表的增删改查 列表的嵌套 元组的初识(了解) 元组的简单应用(了解) range 2 具体内容 列表的初识 why: str: 存储少量的数据.切片出来全都是str类型,存储的数据单一. list:能储存大量的数据.包含不同类型的数据.且有顺序,有规律,可自己制作设计其中的数据,可修改 what:list l1 = [100, 'alex',True,[1, 2, 3]] 可承载任意数据类型,存储大量的数据. python常用的容器型数据类型. 列表是…