/*为防止处理超大作业时超时,将io时间设为1小时         *         <property>            <name>dfs.datanode.socket.write.timeout</name>            <value>6000000</value>        </property>        <property>            <name>dfs.so…
https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实现性,下面主要介绍mapReducehe和Spark两者的shuffle过程. MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随…
/** * author : 冶秀刚 * mail     : dennyy99@gmail.com */ Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有…
Shuffle过程是MapReduce的核心,Shuffle描述着数据从map task输出到reduce task输入的这段过程. 1.map端…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有…
——转自:{http://langyu.iteye.com/blog/992916} Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必需要了解的.我看过非常多相关的资料,但每次看完都云里雾里的绕着,非常难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的执行机制,这才对Shuffle探了个到底. 考虑到之前我在看相关资料而看不懂时非常恼火.所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.假设你对这…
MapReduce Shuffle 过程详解 一.MapReduce Shuffle过程 1. Map Shuffle过程 2. Reduce Shuffle过程 二.Map Shuffle过程 1.   环形缓冲区 Map输出结果是先放入内存中的一个环形缓冲区,这个环形缓冲区默认大小为100M(这个大小可以在io.sort.mb属性中设置),当环形缓冲区里的数据量达到阀值时(这个值可以在io.sort.spill.percent属性中设置)就会溢出写入到磁盘,环形缓冲区是遵循先进先出原则,Ma…
MapReduce简介 在Hadoop MapReduce中,框架会确保reduce收到的输入数据是根据key排序过的.数据从Mapper输出到Reducer接收,是一个很复杂的过程,框架处理了所有问题,并提供了很多配置项及扩展点.一个MapReduce的大致数据流如下图: 更详细的MapReduce介绍参考Hadoop MapReduce原理与实例. Mapper的输出排序.然后传送到Reducer的过程,称为shuffle.本文详细地解析shuffle过程,深入理解这个过程对于MapRedu…