最优化之凸优化之Bregman算法】的更多相关文章

本文介绍了Bregman迭代算法,Linearized Bregman算法(及在求解Basis Pursuit问题中的应用)和Split Bregman算法(及在求解图像TV滤波问题中的应用). 由于初学,加之水平有限,文中会有疏漏错误之处,希望大家批评指正赐教. 更新记录 本文持续更新!如文中有错误,或你对本文有疑问或建议,欢迎留言或发邮件至quarrying#qq.com! 2015年12月29日,发表博文. 2016年01月09日,修改若干标记,修正两处标记错误. 2016年01月29日,…
一些在线预测问题可以转化到在线凸优化框架中.下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架.例如,在线分类问题中,预测域(predictions domain)或损失函数不是凸的.我们描述了两种凸化技术,它们允许我们在其他场景中使用在线凸优化框架. 1.Convexification by Randomization 为了演示randomization技术,我们考虑一个专家建议的预测问题:每个在线回合中,学习者必须从d位给定专家的建议中进行选择. 表示选到的专家,然后学习机收到…
最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了能最小化累计损失不能说明此算法在在线学习场景是有效,我们需要探究算法的 Regret bound: 采用归纳法证明: 例子1:Online Quadratic Optimization 例子2:Online Linear Optimization 未完,待续...... 下一节将讲述FTRL算法…
姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖 近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,华裔学者鬲融获此殊荣. 鬲融 2004 年从河北省保送至清华大学计算机系,是首届清华姚班毕业生,普林斯顿大学计算机科学系博士,曾在微软研究院新英格兰分部做博士后,2015年至今在杜克大学担任助理教授. 斯隆研究奖自1955年设立,每年颁发一次,旨在向物理学.化学和数…
目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连续的.每辆车上的贞鱼会产生互相怨恨的值,设a与b之间的怨恨值为G(a,b),一辆车上的贞鱼的编号从L到R,那么这辆车上的怨恨值为\(\sum_{L<=a,b<=R}G(a,b)\).注意G(a,b)=G(b,a),一对贞鱼之间的怨恨值只算一次,也就是G(a,b)和G(b,a)只算一次. 1<…
近年来,许多有效的在线学习算法的设计受到凸优化工具的影响. 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞争向量的集合U的Regret被定义为: 备注: 在线凸优化问题中,学习机的预测应该来自集合S,而我们分析关于集合U的Regret.当我们不指定U时,我们默认U=S.另外,S的默认设置将是. 未完,待续...... 接下来,我们从凸化技术开始,展示了如何在非凸问题中利用在线凸优化框架.然后,我们开始描…
紧接上文,我们讲述在线分类问题 令,为0-1损失,我们做出如下的简化假设: 学习者的目标是相对于hypotheses set: H具有low regret,其中H中的每个函数是从到{0,1}的映射,并且regret被定义为: 我们首先证明这是一个不可能完成的任务——如果,没有算法可以获得次线性regret bound.考虑,是一个总是返0的函数,是一个总是返1的函数.通过简单地等待学习者的预测然后提供相反的答案作为真实答案,攻击者可以使任何在线算法的错误数等于T.相反,对于任何真实答案序列,令b…
开启一个在线学习和在线凸优化框架专题学习: 1.首先介绍在线学习的相关概念 在线学习是在一系列连续的回合(rounds)中进行的: 在回合,学习机(learner)被给一个question:(一个向量,即为特征向量),为从instance domain:采样得到的.学习机给出一个预测值:,然后得到正确的答案:,从target domain:采样得到,定义损失函数为.在大多数情况下,在中,但是,允许学习者从更大的集合中选择预测有时很方便,我们用D表示prediction domain.下图展示了在…
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几…
目录 凸集的基本概念 凸函数的基本概念 凸优化的一般提法 凸集基本概念 思考两个不能式 两个正数的算术平均数大于等于几何平均数 给定可逆对称阵Q,对于任意向量x,y,有: 思考凸集和凸函数 在机器学习中,我们把形如 这样的图形的都称为凸函数. \(y=x^2\)是凸函数,函数图像上位于\(y=x^2\)的区域构成凸集. 凸函数图像的上方区域,一定是凸集: 一个函数图像的上方区域为凸集,则该函数是凸函数. 直线的向量表达 已知二维平面上的两定点A(5,1),B(2,3)尝试给出经过带你AB的直线方…