使用Euclid算法求最大公约数】的更多相关文章

参考文章 1.<linux c编程一站式学习>的习题5.3.1 2.百度百科Euclid算法:https://baike.baidu.com/item/Euclid%E7%AE%97%E6%B3%95 思想 使用Eucid算法编写两个正整数a和b的最大公约数(GCD, Greatest Common Dvisor) 1.如果a能整除b, 则最大公约数是b 2.否则,最大公约数等于b和a%b的最大公约数:即gcd(a,b)=gcd(b,a%b) code //功能:求取两个正整数的最大公约数 #…
一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: s3:用更相减损法(辗转相减法),即GCD(a,b)=GCD(a-b,b),或辗转相除法求出两奇数的最大公约数d: s4:原来两数的最大公约数即为d*k: 2.简单证明: s1:即为求出两数为2的幂次方的最大公因数k: s2:当化简后两数一奇一偶时,显然奇数是不含偶数因子的,那么另一化简后偶数的所…
首先引进一个符号:gcd是greatest common divisor(最大公约数)的缩写,gcd( x,y ) 表示x和y的最大公约数.然后有一个事实需要了解:一个奇数的所有约数都是奇数.这个很容易,下面我们要用到.      来研究一下最大公约数的性质,我们发现有 gcd( k*x,k*y ) = k*gcd( x,y ) 这么一个非常好的性质(证明我就省去了).说他好是因为他非常符合我们化小的思想.我们试取 k=2 ,则有 gcd( 2x,2y ) = 2 * gcd( x,y ).这使…
Euclid求最大公约数算法 #include <stdio.h> int gcd(int x,int y){ while(x!=y){ if(x>y) x=x-y; else y=y-x; } return x; } int main(int argc, const char *argv[]) { if(3!=argc){ printf("Usage:<a,out> num1 num2\n"); return -1; } printf("%d\…
---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非负整数a和任意正整数b,gcd(a,b)=gcd(b,a%b). ============================================================= gcd(a,b)=gcd(b, a+kb) a,b,k为任意整数 即gcd(a,b)=gcd(b, a mod…
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x). 1个引理: 假设 k|a, k|b,则对任意的 x,y  ∈ Z, k|(xa+yb)均成立. 证明: k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z) 于是有 xa+yb=xpk+yqk=(xp+yq)k 因为 k|(xp…
package Basic; import java.util.Scanner; public class Gcd { public static void main(String[] args) { Scanner scanner=new Scanner(System.in); int num_1=scanner.nextInt(); int num_2=scanner.nextInt(); if(num_1>num_2){ System.out.println(gcd(num_1, num_…
辗转相除法,一种求最大公约数的算法 已知:A / B = C ······ R  (A.B.C.R皆是整数) 假设:D是A的余数,D也是B的余数,那么D就是A和B的公约数 D是A和B的约数,则A和B是D的倍数,B * C也是D的倍数 既然A与B*C都是D的倍数,那么A与B*C的差也是D的倍数 A - B*C = R 所以R也是D的倍数 如果D是A或B的公约数,那么D也是B和R的公约数 故:(A,B)= (B,R) 由以上证明则可以求出最大的公约数 例如:求72和28的最大公约数 72 / 28…
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找到规律,即是求与k互质的数x,x进制下即能满足上述规律. 相关 求最大公约数:辗转相除法(又叫欧几里得算法) 欧几里德定理: gcd(a, b) = gcd(b , a mod b) ,对于正整数a.b. 其中a.b大小无所谓.当a值小于b值时,算法的下一次递归调用就能够将a和b的值交换过来. 代码…
#欧几里得求最大公约数 #!/usr/bin/env python #coding -*- utf:8 -*- #iteration def gcd(a,b): if b==0: return a else: return gcd(b, remainder(a, b)) #此方法仅仅书用于a和b都为正数 def gcd_1(a,b): while(b>0): rem = remainder(a,b) a = b b = rem return a def remainder(x,y): retur…