目录 1. USB摄像头取图 2. 图像预处理:获取屏幕ROI 2.1. 分离提取屏幕区域 2.2. 计算屏幕区域的旋转角度 2.3. 裁剪屏幕区域 2.4. 旋转图像至正向视角 2.5. 提取文字图像 2.6. 封装上述过程 3. 字符分割,获取单个字符的图像 4. 模板匹配:确定字符内容 4.1. make_template 4.2. 模板修复 4.3. 重新加载模板数据 4.4. 模板匹配 1. USB摄像头取图 由于分辨率越高,处理的像素就越多,导致分析图像的时间变长,这里,我们设定摄像…
OCR OCR(Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程. Tesseract(识别引擎) 简介 Tesseract是一款由HP实验室开发由Google维护的开源OCR引擎,当时在1995年已经成为OCR业内最准确的三款识别引擎之一,后开源并委托Google对其进行改进.优化,特点是开源,免费,支持多语言,多平台.Tesserac…
摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作. 程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成.并在Windows xp-32位系统…
自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 集成测试是在单元测试的基础上,先通过单元模块组装成系统或子系统,再进行测试.重点是检查模块之间的接口是否正确. 1.1.3 系统测试 系统测试是针对整个产品系统进行的测试,验证系统是否满足需求规格的定义,以及软件系统的正确性和性能等是否满足其需求规格的要求. 1.1.4 验收测试 验收测试是部署软…
字符识别OCR原理及应用实现 文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号.光学字符识别(OCR)相信大家都不陌生,就是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程. 工业场景的图像文字识别更加复杂,出现在很多不同的场合.例如医药品包装上的文字.各种钢制部件上的文字.容器表面的喷涂文字.商店标志上的个性文字等.在这样的图像中,字符部分可能出现在弯曲阵列.曲面异形.斜率分布.皱纹变形.不完…
一.引言 上篇文章中四种方法对图像进行倾角矫正都非常有效.Hough变换和Radon相似,其抗干扰能力比较强,但是运算量大,程序执行慢,其改进方法为:我们可以不对整幅图像进行操作,可以在图像中选取一块(必须含有一条与倾角有关的直线)进行操作,从而减小运算量.这里Hough变换法和Radon变换法进行倾角检测的最大精度为1度.它们的优点是可以计算有断点的直线的倾角.最小二乘法的优点就是运算量小,但是其抗干扰能力比较差,容易受到噪声的影响.两点法虽然理论简单,但由于采样点比较多而且这些点服从随机分布…
基于BP神经网络的字符识别研究 原文作者:Andrew Kirillov. http://www.codeproject.com/KB/cs/neural_network_ocr.aspx 摘要:本文通过对人工智能课程中BP神经网络的学习,基于一个神经网络的开源项目,开发实现了一个简易的字符识别系统,并给出了较为理想的实验效果.该系统可以在手写体,印刷体字符识别上有广泛的应用. 关键词:BP神经网络; 字符识别:开源:AForge.NET 0 引言 在处理光学字符识别(OCR)问题上有很多种方法…
摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出单个字符.识别方法一是採用模板匹配的方法逐个对字符与预先制作好的字符模板比較,假设结果小于某一阈值则结果就是模板上的字符:二是採用BP神经网络训练.通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. keyword: 倾斜矫正.字符切…
前言 虽然计算机视觉领域目前基本是以深度学习算法为主,但实际上很多时候对图片的很多处理方法,并不需要采用深度学习的网络模型,采用目前成熟的图像处理库即可实现,比如 OpenCV 和 PIL ,对图片进行简单的调整大小.裁剪.旋转,或者是对图片的模糊操作. 所以本文主要是介绍用 OpenCV 实现一些基本的图像处理操作,本文的目录如下所示: 安装 旋转图片 裁剪图片 调整图片大小 调整图片对比度 模糊图片 高斯模糊 中值模糊 边缘检测 转为灰度图 形心检测 对彩色图片采用蒙版(mask) 提取图片…
卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接,比较详细了,如果想详细了解应该看下那篇开篇论文,已经有人翻译成了中文. http://zh.wikipedia.org/zh/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2 卡尔曼滤波器 – Kalman Filter 1.    什么是卡尔曼滤波器(Wh…