JS做深度学习1--偶然发现与入门 不久前,我初次涉猎了Node.js,并且使用它开发了毕业设计的WEB模块,然后通过在Node中调用系统命令执行Python文件方式实现了深度学习功能模块的对接,Python代码的介入,让JS代码显得很累赘,我说过我很爱ES6以后的JS并且很讨厌Python的代码风格,无奈,我在写毕设那会Google还没有正式发布基于JS的深度学习框架,好吧,其实我对这事已经抱怨了很久,但是我的"呼声"仿佛很快就被Google"认同了"(滑稽),就…
JS做深度学习2--导入训练模型 改进项目 前段时间,我做了个RNN预测金融数据的毕业设计(华尔街),当时TensorFlow.js还没有发布,我不得已使用了keras对数据进行了训练,并且拟合好了不同期货的模型,因为当时毕设的网站是用node.js写的,为了可以在网站中预测,我采取的方案是:用python进行训练和预测,然后使用node.js运行python命令,最终在浏览器上可视化出来,这也算的上是黑科技了! 不过这样通过一个解释器调用另一个解释器,语言之间互相通信其实不是什么好的设计方式,…
最近在上海上班了,很久没有写博客了,闲下来继续关注和研究Tensorflow.js 关于深度学习的文章我也已经写了不少,部分早期作品可能包含了不少错误的认识,在后面的博文中会改进或重新审视. 今天聊聊神经网络的入门知识,tensor!本章的题目就是"数据结构",之所以把名字的含义取这么广,是因为,今天从tensor这种数据结构开始,但远不止于tensor! 基础 何为tensor?让我们先看看tensorflow官网的解释 Tensors are the core datastruct…
四.经典入门demo:识别手写数字(MNIST) 常规的编程入门有"Hello world"程序,而深度学习的入门程序则是MNIST,一个识别28*28像素的图片中的手写数字的程序.MNIST的数据和官网:http://yann.lecun.com/exdb/mnist/ 深度学习的内容,其背后会涉及比较多的数学原理,作为一个初学者,受限于我个人的数学和技术水平,也许并不足以准确讲述相关的数学原理,因此,本文会更多的关注"应用层面",不对背后的数学原理进行展开,感谢…
导语 2016年,继虚拟现实(VR)之后,人工智能(AI)的概念全面进入大众的视野.谷歌,微软,IBM等科技巨头纷纷重点布局,AI 貌似将成为互联网的下一个风口. 很多开发同学,对人工智能非常感兴趣,确不知从何入手进行学习,精神哥也同样被这个问题困扰.直至看见汉彬同学的这篇文章,豁然开朗,让我坚定地迈出了成为"AI 工程师"的第一步! 本文作者:腾讯QQ会员技术团队-徐汉彬 微信公众号:小时光茶社 一.人工智能和新科技革命 2017年,围棋界发生了一件比较重要的事,Master(Alp…
这是<使用亚马逊云服务器EC2做深度学习>系列的第四篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 配置深度学习的环境是一个非常繁琐的过程.它要求你对Linux命令有一定地了解,与此同时各种深度学习库.驱动更新十分频繁,有可能明天教程里的安装脚本就不管用了. AMI AMI就是解决方法.AMI是可以直接在EC2启动的系统镜像,有的系统镜像已经配置好了使用GPU的深度学习环境,这样启动实例后,你就可以直…
这是<使用亚马逊云服务器EC2做深度学习>系列的第三篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 TensorFlow是Google发布的深度学习框架,支持Python和C++的接口.TensorFlow既可以用于学术研究,也可以用于生产环境.许多Google的内部服务,就使用了TensorFlow,比如Gmail.语音识别等. 网络上TensorFlow的教程也很丰富,官方文档在第一时间就被翻译成…
这是<使用亚马逊云服务器EC2做深度学习>系列的第二篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 Jupyter Notebook是Python中的一个开源编辑器.它的主界面就是一个网页,可以在浏览器中远程执行程序. 同时它可以方便地混杂代码和程序的说明,有许多TensorFlow的教程就是用Jupyter Notebook来编写的. 出于安全的考虑,Jupyter Notebook默认只能在本地访…
这是<使用亚马逊云服务器EC2做深度学习>系列的第一篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 众所周知深度学习对计算机的要求很高,配置一台数千元的GPU.8GB的内存.HDD的硬盘的深度学习机器价格不菲.然而你并不需要专门配置一台计算机来做深度学习. 亚马逊云服务AWS上被广泛用于部署网站服务,大多数人不知道的是AWS也有带GPU的服务器.低配版的服务器拥(g2.2xlarge)有8核CPU,1…
126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网 作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66 如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步.而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?” 本文将试图解决这个问题——文章标题本来是:“从入门到绝望,无止境的深度学习论文”.请诸位备好道具,开启头悬梁锥刺股的学霸姿势. 开个玩笑. 但对非科班出身的开发者而言,读论文的确可以成为一件很…
1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2.简介 Keras为图片数据输入提供了一个很好的接口,即Keras.preprocessing.image.ImageDataGenerator类,该类生成一个数据生成器Generator对象,依照循环批量生成对应于图像信息的多维矩阵.根据后台运行环境的不同(例如:TensorFlow,Theano…
神经网络剖析   训练神经网络主要围绕以下四个方面: 层,多个层组合成网络(或模型) 输入数据和相应的目标 损失函数,即用于学习的反馈信号 优化器,决定学习过程如何进行   如图 3-1 所示:多个层链接在一起组成了网络,将输入数 据映射为预测值.然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预 测值与预期结果的匹配程度.优化器使用这个损失值来更新网络的权重.  …
一.Tensorflow计算模型:计算图 计算图是Tensorflow中最基本的一个概念,Tensorflow中的所有计算都被被转化为计算图上的节点. Tensorflow是一个通过计算图的形式来描述计算的编程系统.Tensor指张量(多维数组:表明了它的数据结构),Flow指计算图(直观地表达了张量之间通过计算相互转化的过程).Tensorflow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系. 为了建模方便,tf将常量转化成一种永远输出固定值的运算. Tenso…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直在自己的电脑上安装虚拟机跑,速度实在太慢,主机本身性能太弱,独显都没有,物理安装Ubuntu也没多大意义,所以考虑用公司性能最强悍的游戏主机(i7 6700+GTX 1070) 做实验,这台主机平时是用来跑HTC VIVE的,现在归我用了o(*≧▽≦)ツ. 原本以为整个一套安装下来会很顺利,一路火花…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
2006年,机器学习界泰斗Hinton,在Science上发表了一篇使用深度神经网络进行维数约简的论文 ,自此,神经网络再次走进人们的视野,进而引发了一场深度学习革命.深度学习之所以如此受关注,是因为它在诸如图像分类.目标检测与识别.目标跟踪.语音识别.游戏(AlphaGo)等多个领域取得了相当优秀的成绩,掀起了又一波人工只能浪潮.深度学习技术逐渐成为机器学习领域的前沿技术,近年来得到了突飞猛进的发展,这得益于机器学习技术的进步以及计算设备性能的提升.英伟达公司研发的图形处理器(Graphics…
内容 背景 准备 实践 结果 总结 引用 背景 老规矩,先上代码吧 代码所在: https://github.com/BruceDone/darknet_demo 最近在做深度学习相关的项目的时候,了解在现有的深度学习检测流派里面有one-stage ,two stage 两种流派,one-stage流派中yolo模型十分的抢眼 OK,在进一步了解了yolo模型之后,发现不仅有提供速度非快的yolo v3 tiny 版本,而且准确率也非常高,顿时想起了之前在上一篇Tensorflow破解验证码只…
本文转载自:https://blog.csdn.net/qq_38906523/article/details/78730158 即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又开始面临选择 GPU 的难题.正如我们所知,机器学习的成功与否很大程度上取决于硬件的承载能力.在今年 5 月,我在组装自己的深度学习机器时对市面上的所有 GPU 进行了评测.而在本文中,我们将更加深入地探讨: 为什么深度学习需要使用 GPU GPU 的哪种性能指标最为重要 选购 GPU 时有哪些坑需…
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine learning> 介绍:<机器学习的统计基础>在线版,该手册希望在理论与实践之间找到平衡点,各主要内容都伴有实际例子及数据,书中的例子程序都是用R语言编写的. <A Deep Learning Tutorial: From Perceptrons to Deep Networks>…
架构师小组交流会是由国内知名公司技术专家参与的技术交流会,每期选择一个时下最热门的技术话题进行实践经验分享.第一期:来自沪江.滴滴.蘑菇街.扇贝架构师的 Docker 实践分享 第二期:来自滴滴.微博.唯品会.魅族.点评关于高可用架构的实践分享 第三期:京东.宅急送的微服务实践分享(上)(下) 第四期小组交流会邀请到了 Polarr 联合创始人宫恩浩.搜狗大数据总监高君.七牛云 AI 实验室负责人彭垚,对深度学习框架选型.未来趋势展开了交流. 自由交流 Polarr 宫恩浩 我是宫恩浩,现在在斯…
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对…
经过比拼,AlphaGo最终还是胜出,创造了人机大战历史上的一个新的里程碑.几乎所有的人都在谈论这件事情,这使得把“人工智能”.“深度学习”的热潮推向了新的一个高潮.AlphaGo就像科幻电影里具有人的思维和情感的机器人一样,被极大地神话了,而且这让更多的人对人工智能产生了畏惧感.那么,AlphaGo的胜利真的意味着人工智能(AI)已经超越人类了吗? 答案肯定是No. AlphaGo仍只是个机器,之所以它能够战胜李世石是完全依靠它强大的运算能力和模仿能力,但本身并不具备人类拥有的智慧.面对新的规…
本文始发于个人公众号:TechFlow,原创不易,求个关注 上次给大家推荐了免费的spark集群之后,就有很多小伙伴来问我有没有好的云GPU平台推荐.我一直没给大家推荐,主要原因是我常年使用Mac,对GPU配置了解不深,不过云GPU平台我倒是用过几个,今天就和大家来简单聊聊. Colab 首先来介绍免费的,最著名的免费的平台应该是Colab.Colab是Google提供的免费云服务,并且还支持GPU,所以我们完全可以使用它来做深度学习的学习. Colab嵌入在Google Drive当中,我们首…
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D…
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ------------------------------------------------------------ 近期,弗莱堡大学的Oksana Kutina 和 Stefan Feuerriegel发表了一篇名为<深入比较四个R中的深度学习包>的博文.其中,四个R包的综述如下: MXNet: MXNet深度学习库的R接…
Lecture 8  Deep Learning Software 课堂笔记参见:https://blog.csdn.net/u012554092/article/details/78159316 今天我们来介绍深度学习软件,它们的性能.优劣以及应用流程,包括CPU.GPU和一些流行的深度学习框架. 一.          CPU vs GPU GPU被称作显卡(graphics card),或者图形处理器(Graphics Processing Unit),是一种专门进行图像运算工作的微处理器…