LGOJ4450 双亲数】的更多相关文章

Description link \[\sum \limits_{i = 1}^A \sum \limits_{j = 1}^B [ \gcd(i, j) = d] \] 要\(O(\sqrt n)\)的算法 Solution 题目要求的是 \[\sum \limits_{i = 1}^A \sum \limits_{j = 1}^B [ \gcd(i, j) = d] \] 要\(O(\sqrt n)\)的算法 对式子进行套路性的变形 \[\sum \limits_{i = 1}^{ \lfl…
2045: 双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 602  Solved: 275[Submit][Status] Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数. 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6),…
2045: 双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数. 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6), (6, 4), (2, 100)都是2的双亲数. 于是一个这样的问题摆在眼前,对于0 < a <= A, 0 < b <= B,有多少有序…
[BZOJ2045]双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数. 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6), (6, 4), (2, 100)都是2的双亲数. 于是一个这样的问题摆在眼前,对于0 < a <= A, 0 < b <= B,有…
双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 959  Solved: 455[Submit][Status][Discuss] Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数. 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6…
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 设F(t)表示满足gcd(x,y)%t=0的数对个数,f(t)表示满足gcd(x,y)=t的数对个数,实际上答案就是f(d) 这就满足莫比乌斯反演的关系式了 显然我们珂以得知F(t)=(b/t)*(d/t) 我们根据反演的第二个公式便珂以得出 \[f(d)=\sum_{n|d}\mu(\frac{d}{n})F(d)\] 在用下整除分块就过了 #include <bits/stdc++.h> #define N 1000005 #defin…
思路 同zap-queries 莫比乌斯反演的板子 数据范围小到不用整除分块... 代码 #include <cstdio> #include <algorithm> #include <cstring> #define int long long using namespace std; int mu[1010000],isprime[1010000],iprime[1010000],cnt,n,m,d; void prime(int n){ isprime[1]=t…
http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写的(虽然我没写出来) #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; ; l…
https://www.luogu.org/fe/problem/P4450 应该不分块也可以. 求\(F(n,m,d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==d]\) 模板题,直接套. 但是我的分块的上界忘记把n和m换过来了. 实验证明每次都要取min,不是一蹴而就的把n换到小的然后让r赋值n. #include<bits/stdc++.h> using namespace std; typedef long long ll…
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i][k|j][({i\over k},{j\over k})=1]=\sum\limits_{i=1}^{a\over k}\sum\limits_{j=1}^{b\over k}[(i,j)=1]\] 继续化简 \[\sum\limits_{i=1}^{b\over k}\sum\limits_{…