语义网的愿景活跃且良好,广泛应用于行业 语义网的愿景是「对计算机有意义」的数据网络(正如 Tim Berners Lee.James Hendler 和 Ora Lassila 在<科学美国人>发表的文章<The Semantic Web>所介绍的那样).ISWC 是共享这一愿景的研究人员和工程师组成的社区:他们通过发表研究论文的形式作出贡献,目的是让这一愿景成为现实.具体而言,语义网研究人员的方法是创建知识图谱,这种数据结构的实体由 URL 进行唯一标识,并使用 RDF 语言通过…
介绍 在本系列前面两篇文章中我一直在讨论Data Fabric,并给出了一些关于Data Fabric中的机器学习和深度学习的概念.并给出了我对Data Fabric的定义: Data Fabric是支持企业所有数据的平台,它作为一个统一的框架来管理.描述.组合和访问数据.该平台由企业知识图谱构成以创建统一的数据环境. 如果你仔细看一下定义,它说Data Fabric是由企业知识图谱构建的,所以我们最好知道如何创建和管理它. 目标 建立了知识图谱理论的基础和讲解如何构建一个知识图谱 细节 解释与…
介绍 我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric. 在上一篇文章中,我们对机器学习给出了新的定义: 机器学习是一种自动发现Data Fabric中隐藏的"洞察力"(insight)的过程,它使用的算法能够发现这些"洞察力"(insight),而无需专门为此编写程序,从而创建模型来解决特定(或多个)问题. 理解这一点的前提是我们创建了一个Data Fabric.对我来说,最好的工具就是Anzo,正如我之前提到的. 你可以使用An…
介绍 如果你在网上搜索机器学习,你会找到大约20500万个结果.确实是这样,但是要找到适合每个用例的描述或定义并不容易,然而会有一些非常棒的描述或定义.在这里,我将提出机器学习的另一种定义,重点介绍一种新的范式--Data Fabric[1]. 目标 解释Data Fabric与机器学习的关系 细节 给出关于Data Fabric以及创建它的生态系统的描述 用几句话解释什么是机器学习 提出一种在Data Fabric内部可视化机器学习洞察(insight)的方法 主要理论 如果我们可以创建一个支…
作者:Lingbing Guo.Qingheng Zhang.Weiyi Ge.Wei Hu.Yuzhong Qu 2018 年 8 月 14-17 日,主题为「知识计算与语言理解」的 2018 全国知识图谱与语义计算大会(CCKS 2018)在天津成功举办.该会议是由中国中文信息学会语言与知识计算专委会定期举办的全国年度学术会议,并致力于成为国内知识图谱.语义技术.链接数据等领域的核心会议.本届会议的最佳英文论文来自南京大学计算机软件新技术国家重点实验室和信息系统工程重点实验室,提出了一种用于…
一.前言 就IT而言,胖子哥算是老兵,可以去猝死的年纪,按照IT江湖猿龄的规矩,也算是到了耳顺之年:而就人工智能而言,胖子哥还是新人,很老的新人,深度学习.语音识别.人脸识别,知识图谱,逐个的学习了一遍,并在商业变现的项目中投入应用,语音识别.人脸识别和知识图谱.即使有十多年的技术底蕴,学起来也算颇费周章,用起来更是步步坎坷.实践过程中做了笔记,并且把内容整理成了系列课程2017年底份推出了<人工智能产品经理最佳实践>,2018年初推出了<知识图谱开发实战案例剖析>线下和线上的视频…
目录 分为两个部分,笔者看到的知识图谱在商业领域的应用,外加看到的一些算法框架与研究机构. 文章目录 @ 一.知识图谱商业应用 01 唯品金融大数据 02 PlantData知识图谱数据智能平台 03 拍拍贷图数据库技术 04 CN-DBpedia 05 OpenKG.CN--开放的中文知识图谱 06 楚辞 07 海致大数据 08 腾讯云星图 09 网感至察 10 慧科技术 - 商业AI(NLP + 品牌Logo识别) 二.相关科研机构与算法框架 2.1 复旦大学 Knowledge Works…
4.(2021.6.24)Briefings-生物信息学中的图表示学习:趋势.方法和应用 论文标题: Graph representation learning in bioinformatics: trends, methods and applications 论文期刊: Briefings in Bioinformatics 2021 论文地址: https://www.researchgate.net/profile/Haicheng-Yi/publication/354327323_G…
Atitit 知识图谱解决方案:提供完整知识体系架构的搜索与知识结果overview   知识图谱的表示和在搜索中的展1 提升Google搜索效果3 1.找到最想要的信息.3 2.提供最全面的摘要.4 3.让搜索更有深度和广度.4   互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web).在这个背景下,Google.百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Gr…
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识图谱的每个步骤.今天介绍知识图谱里面的NER的环节. 命名实体识别(Named Entity Recognition,简称NER),是指识别文本中具有特定意义的实体,主要包括人名.地名.机构名.专有名词等.通常包括两部分:(1)实体边界识别:(2) 确定实体类别(人名.地名.机构名或其他). 2.…