原来你是这样的BERT,i了i了! -- 超详细BERT介绍(一)BERT主模型的结构及其组件 BERT(Bidirectional Encoder Representations from Transformers)是谷歌在2018年10月推出的深度语言表示模型. 一经推出便席卷整个NLP领域,带来了革命性的进步. 从此,无数英雄好汉竞相投身于这场追剧(芝麻街)运动. 只听得这边G家110亿,那边M家又1750亿,真是好不热闹! 然而大家真的了解BERT的具体构造,以及使用细节吗? 本文就带大…
写在前面 ​ 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目.虽然文本分类看似简单,但里面的门道好多好多,博主水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望各位看官都能有所收获.并且尽可能提供给出简洁,清晰的代码实现. ​ 本文采用的文本分类模型是基于Bert和TextCNN的方法进行魔改,在博主实际的有关文本分类的工作中取得了F1值超越Bert基础模型近4%的效果.大家可以用自己的数据尝试一下哦 - _ * ​ 有关于Bert文本分类basel…
layout: blog title: Bert系列伴生的新分词器 date: 2020-04-29 09:31:52 tags: 5 categories: nlp mathjax: true typora-root-url: .. 本博客选自https://dxzmpk.github.io/,如果想了解更多关于transformers模型的使用问题,请访问博客源地址. 概括 这篇文章将对Bert等模型使用的分词技术进行介绍.同时会涉及这些分词器在huggingface tokenizers库…
用NVIDIA-NGC对BERT进行训练和微调 Training and Fine-tuning BERT Using NVIDIA NGC 想象一下一个比人类更能理解语言的人工智能程序.想象一下为定制的域或应用程序构建自己的Siri或Google搜索. Google BERT(来自Transformers的双向编码器表示)为自然语言处理(NLP)领域提供了一个改变游戏规则的转折点. BERT运行在NVIDIA GPUs驱动的超级计算机上,训练其庞大的神经网络,达到前所未有的NLP精度,冲击了已…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
目录 引言 概览 Token Embeddings 作用 实现 Segment Embeddings 作用 实现 Position Embeddings 作用 实现 合成表示 结论 参考文献 本文翻译自Why BERT has 3 Embedding Layers and Their Implementation Details 引言 ​ 本文将阐述BERT中嵌入层的实现细节,包括token embeddings.segment embeddings, 和position embeddings.…
目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Transformer:超越LSTM 七.OpenAI Transformer:为语言建模预训练一个Transformer解码器 八.在下游任务中使用迁移学习 九.BERT:从解码器到编码器 MLM语言模型 两个句子的任务 解决特定任务的模型 用于特征提取的BERT 十.把BERT牵出来遛一遛 本文翻译…
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和释义而且它是开源的.因此在社区中非常流行. 下图展示了不同模型的GLUE基准测试分数(不同NLP评估任务的平均得分)变化过程. 尽管目前还不清楚是否所有的GLUE任务都非常有意义,但是基于Trandformer编码器的通用模型(Open-GPT.BERT.BigBird),在一年内缩小了任务专用模型…
本博文介绍用Google pre-training的bert(Bidirectional Encoder Representational from Transformers)做中文NER(Name Entity Recognition) 第一步: git clone https://github.com/google-research/bert.git ,存放在 bert文件中 第二步: 下载BERT-Base Chinese模型, 存放在checkpoint文件中 相关文件结构如下: BER…