CVPR 2019 行人检测新思路:】的更多相关文章

CVPR 2019 行人检测新思路:高级语义特征检测取得精度新突破 原创: CV君 我爱计算机视觉 今天 点击我爱计算机视觉置顶或标星,更快获取CVML新技术 今天跟大家分享一篇昨天新出的CVPR 2019论文<High-level Semantic Feature Detection:A New Perspective for Pedestrian Detection>,作者将行人检测问题转化为高级语义特征检测的问题,刷新了行人检测精度的新高度!而且作者称代码将开源. 论文作者信息: 作者分…
前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的extra features做了诸多分析,并且提出了HyperLearner行人检测框架(基于Faster R-CNN改进),在KITTI&Caltech&Cityscapes数据集上实现了极为优秀的性能. 论文:http://openaccess.thecvf.com/content_cvpr_…
这是行人检测相关资源的第二部分:源码和数据集.考虑到实际应用的实时性要求,源码主要是C/C++的.源码和数据集的网址,经过测试都可访问,并注明了这些网址最后更新的日期,供学习和研究进行参考.(欢迎补充更多的资源) 1        Source Code 1.1    INRIA Object Detection and Localization Toolkit http://pascal.inrialpes.fr/soft/olt/ Dalal于2005年提出了基于HOG特征的行人检测方法,行…
行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域.从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,主要还是在性能和速度方面还不能达到一个权衡.近年,以谷歌为首的自动驾驶技术的研发正如火如荼的进行,这也迫切需要能对行人进行快速有效的检测,以保证自动驾驶期间对行人的安全不会产生威胁. 1   行人检测的现状 大概可以分为两类 1.1    基于背景建模 利用背景建模方法,提取出前景运动的目标,在目标区域内进行特征提取,然后利用分类器进行…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…
首先我们知道Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主,那么PCL中也是利用这一思想来进行行人的检测, 总体思路: 1.提取正负样本hog特征 2.投入svm分类器训练,得到model 3.由model生成检测子 4.利用检测子检测负样本,得到hardexample 5.提取hardexamp…
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测.而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法.后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架.因此,Hog+SVM也成为一个里程表式的算法被写入到OpenCV中.在OpenCV2.0之后的版本,都有Hog特征描述算子的API,而至于SVM,早在OpenC…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…
背景 CVPR 2019 是机器视觉方向最重要的学术会议,本届大会共吸引了来自全世界各地共计 5160 篇论文,共接收 1294 篇论文,投稿数量和接受数量都创下了历史新高,其中与自动驾驶相关的论文.项目和展商也是扎堆亮相,成为本次会议的“新宠”. 障碍物轨迹预测挑战赛(Trajectory Prediction Challenge)隶属于CVPR 2019 Workshop on Autonomous Driving — Beyond Single Frame Perception(自动驾驶研…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…