GBDT的理解和总结】的更多相关文章

2015/11/21 16:29:29 by guhaohit 导语: GBDT是非常有用的机器学习的其中一个算法,目前广泛应用于各个领域中(regression,classification,ranking).这篇文章是我自己对GBDT的总结加上自己的一些理解,所以中间一些内容并不全都是个人的原创.由于自身水平有限,可能会有错误,主要是为了让自己加强对GBDT的理解. 一,GBDT简介: GBDT的中文名叫做梯度提升决策树.由名字我们就可以看出,这个算法是由两部分构成的,梯度提升和决策树,而G…
谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和GBDT.本文对各类树形算法的基本思想进行了简单的介绍,重点谈一谈被称为是算法中的“战斗机”,机器学习中的“屠龙刀”的GBDT算法. 1. 决策树的模型 决策树是一种基本的分类与回归方法,它可以被认为是一种if-then规则的集合.决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别…
从提升树出发,——>回归提升树.二元分类.多元分类三个GBDT常见算法. 提升树 梯度提升树 回归提升树 二元分类 多元分类 面经 提升树 在说GBDT之前,先说说提升树(boosting tree).说到提升(boosting),总是绕不过AdaBoost. AdaBoost是利用前一轮迭代的误差率来更新训练集的权重,校正前一轮迭代被错误分类的样本,通俗一点的理解就是将重心放在分错的样本上.提升树也是boosting家族的成员,意味着提升树也采用加法模型(基学习器线性组合)和前向分步算法. 下…
在做阿里的o2o优惠券预测的时候学习了GBDT.听闻GBDT的威力,自然要学习学习. 接下来从以下几个方面记录下我对于GBDT的理解. GBDT的用途,优势 GBDT的结构和算法流程 GBDT如何训练 Sklearn 的GBDT使用,参数意义 GBDT的用途,优势: GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法, 该算法由多棵决策树组成,所有树的结论累加起来…
GBDT (Gradient Boosting Decision Tree) 梯度提升迭代决策树.GBDT 也是 Boosting 算法的一种,但是和 AdaBoost 算法不同(AdaBoost 算法上一篇文章已经介绍):区别如下:AdaBoost 算法是利用前一轮的弱学习器的误差来更新样本权重值,然后一轮一轮的迭代:GBDT 也是迭代,但是 GBDT 要求弱学习器必须是 CART 模型,而且 GBDT 在模型训练的时候,是要求模型预测的样本损失尽可能的小. GBDT 直观理解:每一轮预测和实…
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们之间有非常紧密的联系,GBDT是以决策树(CART)为基学习器的GB算法,xgboost扩展和改进了GDBT,xgboost算法更快,准确率也相对高一些. 1. Gradient boosting(GB) 机器学习中的学习算法的目标是为了优化或者说最小化loss Function, Gradient…
在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下: GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法.近些年更因为被用于搜索排序的机器学习模型而引起大家关注. 后记:发现GBDT除了我描述的残差版本外还有…
https://www.zybuluo.com/yxd/note/611571 https://zhuanlan.zhihu.com/p/29765582 gbdt 在看统计学习方法的时候 理解很吃力. 参考了以上两篇文章,作者写的非常好. 冒昧转载过来. 机器学习-一文理解GBDT的原理-20171001   现在网上介绍gbdt算法的文章并不算少,但总体看下来,千篇一律的多,能直达精髓的少,有条理性的就更稀少了.我希望通过此篇文章,能抽丝剥茧般的向初学者介绍清楚这个算法的原理所在.如果仍不清…
一.提升树 提升方法实际采用加法模型(即基函数的线性组合)与前向分布算法.以决策树为基函数的提升方法称为提升树,boosting tree.对分类问题的决策树是二叉分类树,对回归问题的决策树是二叉回归树.提升树算法是AdaBoost算法的特殊情况.我的理解提升树分为普通提升树与梯度提升树,普通提升树每次拟合的是真实残差值,而梯度提升树拟合的是损失函数在当前模型的的负梯度. 普通提升树解决回归问题算法如下: 输入:训练数据集T={(x1,y1),(x2,y2),...,(xn,yn)} 输出:提升…
目录 1.前述 2.向量空间的梯度下降: 3.函数空间的梯度下降: 4.梯度下降的流程: 5.在向量空间的梯度下降和在函数空间的梯度下降有什么区别呢? 6.我们看下GBDT的流程图解: 7.我们看一个GBDT的例子: 8.我们看下GBDT不同版本的理解: 1.前述 从本课时开始,我们讲解一个新的集成学习算法,GBDT. 首先我们回顾下有监督学习.假定有N个训练样本,, 找到一个函数 F(x),对应一种映射使得损失函数最小.即: 如何保证最小呢?就是通过我们解函数最优化的算法去使得最小,常见的有梯…